首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   17篇
  国内免费   5篇
测绘学   1篇
地球物理   19篇
地质学   65篇
综合类   4篇
自然地理   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
51.
TIMS-ID and SIMS U–Pb dating on zircons from metaplutonic rocks involved in the Pan-African nappe of southern Cameroon allow definition of three groups of subduction-related intrusions: group-I intrusions represented by the Masins metagabbro in the Lomie region yielded 666 ± 26 Ma; group-II intrusions represented by the Mamb metasyenogabbro and the Yaoundé pyriclasite yielded ca. 620 Ma and are broadly coeval with the deposition of the Yaoundé metasediments; group-III intrusions represented by the Elon augen metagranite and the Ngaa Mbappe metamonzodiorite yielded ca. 600 Ma. The onset of the nappe tectonics occurred under high-grade conditions in the range 616 to 610 Ma and continued around 600 Ma with the emplacement of the shallowest nappes. Finally, the construction of southern Cameroon proceeded by a multi-stage evolution characterized by a long-lived development of magmatic arcs associated with rapid opening and closure of sedimentary marginal basins in relation to a northward subduction.  相似文献   
52.
利用远参考与Robust技术手段对新疆北天山地区大地电磁原始资料进行去噪处理,以及静态校正、逐级反演、梯度法、残差法等处理与综合地质解释,取得了较好成效。将该区划分为四棵树凹陷、山前断褶带、北天山推覆带、中天山隆起带四大构造单元,其中北天山推覆带地表裸露石炭系基岩。在推覆断层之下,显示中浅部存在层状低阻异常带,推测为侏罗与白垩系地层,为油气远景区。  相似文献   
53.
Abstract

In the Oman mountains, a succession of sedimentary decollement nappes, the Hawasina nappes, is sandwiched between the Samail ophiolite nappe and its underlying melange and the “autochthonous” sequences of the Arabian platform. The sediments of the Hawasina nappes document the Mesozoic evolution of the northeastern Arabian continental margin and the adjacent Tethys Ocean. In earlier paleogeographic reconstructions, based on simple telescoping of the tectonic units, the upper Hawasina nappes represent the distal part and the lower nappes the proximal part of the margin. New stratigraphic data suggest a revision of the paleogeography and a more complex model for nappe emplacement in the central Oman mountains. The lower Hawasina nappes with their Jurassic and Cretaceous base of slope and basin sediments (Hamrat Duru, Wahrah) form the original cover of part of the upper Hawasina nappes. In the latter (Al Ayn, Haliw), Triassic pelagic sediments, locally overlain by massive sandstone successions are preserved. Complete Mesozoic sequences with pelagic Cenomanian sediments as youngest dated elements are found in the highest Hawasina units (Al Aridh and Oman Exotics). The stratigraphic data indicate polyphase thrusting in the central Oman mountains. Downward propagation of thrusting in front of the Samail is responsible for cutting the original stratigraphie sequence into a number of thrust-sheets, involving successively older and more external formations. This kind of thrust propagation eventually leads to the observed superposition of originally lower stratigraphie units onto their original cover. Regional deformation of the nappe contacts in post-nappe culminations (J. Akhdar, Saih Hatat) is related to ramp-flat-systems in the Arabian foreland.  相似文献   
54.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   
55.
Metabasic rocks from the Adula Nappe in the Central Alps record a regional high‐pressure metamorphic event during the Eocene, and display a regional variation in high‐pressure mineral assemblages from barroisite, or glaucophane, bearing garnet amphibolites in the north to kyanite eclogites in the central part of the nappe. High‐pressure rocks from all parts of the nappe show the same metamorphic evolution of assemblages consistent with prograde blueschist, high‐pressure amphibolite or eclogite facies conditions followed by peak‐pressure eclogite facies conditions and decompression to the greenschist or amphibolite facies. Average PT calculations (using thermocalc ) quantitatively establish nested, clockwise P–T paths for different parts of the Adula Nappe that are displaced to higher pressure and temperature from north to south. Metamorphic conditions at peak pressure increase from about 17 kbar, 640 °C in the north to 22 kbar, 750 °C in the centre and 25 kbar, 750 °C in the south. The northern and central Adula Nappe behaved as a coherent tectonic unit at peak pressures and during decompression, and thermobarometric results are interpreted in terms of a metamorphic field gradient of 9.6 ± 2.0 °C km?1 and 0.20 ± 0.05 kbar km?1. These results constrain the peak‐pressure position and orientation of the nappe to a depth of 55–75 km, dipping at an angle of approximately 45° towards the south. Results from the southern Adula Nappe are not consistent with the metamorphic field gradient determined for the northern and central parts, which suggests that the southern Adula Nappe may have been separated from central and northern parts at peak pressure.  相似文献   
56.
The Seve–Köli Nappe Complex is widespread in the Scandinavian Caledonides and is composed of units representing parts of the Baltoscandian margin (Seve Nappes) now overlain by magmatic–sedimentary rocks (Köli Nappes) derived from west of this margin. The metamorphic evolution of Köli and Seve units has been studied in the Handöl area, central Scandinavian Caledonides, where a fragmented ophiolite with cover sequence in the lower Köli units is thrust over the higher grade Seve units. Thermobarometry constrains metamorphic conditions to 490–570° C/950–600 MPa, with a slight downwards increase in grade, for the lower Köli (Bunnerviken lens), 520–620° C/1000–600 MPa for the upper Seve (Täljstensvalen Complex), 630–740° C/750–650 MPa for the middle Seve (Snasahögarna Nappe) and 480–600° C/1150–1000 MPa for the lower Seve (Blåhammarfjället Nappe).
P–T paths during garnet growth have been constructed for all units, except the highest grade middle Seve. These paths record heating at the base of the Köli and cooling in the underlying Seve units. Pressure increase during garnet growth is indicated for all units leading to anticlockwise P–T paths in the Seve. The results imply thermal convergence with time for all units and spatial convergence in metamorphic grade in the Köli. It is suggested that the contrasting metamorphic histories on either side of the Seve–Köli boundary resulted from the emplacement of relatively colder Köli rocks on top of relatively hotter Seve rocks and that emplacement of structurally higher units contributed to the increase in pressure.  相似文献   
57.
We report the first finding of diamond in crustal rocks from the Tromsø Nappe of the North Norwegian Caledonides. Diamond occurs in situ as inclusions in garnet from gneiss at Tønsvika near Tromsø. The rock is composed essentially of garnet, biotite, white mica, quartz and plagioclase, minor constituents include kyanite, zoisite, rutile, tourmaline, amphibole, zircon, apatite and carbonates (magnesite, dolomite, calcite). The microdiamond, identified by micro‐Raman spectroscopy, is cuboidal to octahedral in shape and ranges from 5 to 50 μm in diameter. The diamond occurs as single grains and as composite diamond + carbonate inclusions. Diamond vibration bands show a downshift from 1 332 to 1 325 cm?1, the majority of Raman peaks are centred between 1 332 and 1 330 cm?1 and all peaks exhibit a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered and ordered graphite (sp2‐bonded carbon) indicating partial transformation of diamond to graphite. The calculated peak P–T conditions for the diamond‐bearing sample are 3.5 ± 0.5 GPa and 770 ± 50 °C. Metamorphic diamond found in situ in crustal rocks of the Tromsø Nappe thus provides unequivocal evidence for ultrahigh pressure metamorphism in this allochthonous unit of the Scandinavian Caledonides. Deep continental subduction, most probably in the Late Ordovician and shortly before or during the initial collision between Baltica and Laurentia, was required to stabilize the diamond at UHP conditions.  相似文献   
58.
内蒙古大青山属我国典型的板内造山带阴山山脉的南部山系,其西段缺少大型低角度推覆构造及大型深成岩对前期演化历史的干扰,是研究阴山板内造山特点及过程的理想区域。通过对大青山西段的构造进行几何学和运动学的分析表明,古老结晶基底以逆冲推覆及基底褶皱的形式广泛地?入中生代的构造变形,以及先存构造样式的广泛复活并对后期地层沉积和断层发育的控制作用是内蒙古大青山地区中生代板内造山的两个基本特征。这些变形特征反映了阴山带板内造山过程中,是以结晶基底为受力层,并控制上覆盖层进行构造变形的,进而表明板内造山主要是由水平挤压应力造成的。结合研究区构造变形特点及邻区中生代构造地质情况的分析认为,晚侏罗世时期之所以在阴山带形成强烈的板内造山运动,是由其北部西伯利亚板块与蒙古褶皱带碰撞产生的板缘应力的远程传递,以及其南侧坚硬的鄂尔多斯地块的阻挡共同作用而形成的。  相似文献   
59.
60.
INTRODUCTIONThe1927GulangMS8.0earthquake is a severe earthquake followed the HaiyuanMS8.5earthquake of1920inthe Qilian Mt._Hexi Corridor earthquake zone.The most severely hit region wasaround Gulang and Liangzhou(the present Wuwei)of Gansu Province,with a…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号