首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   2篇
  国内免费   19篇
测绘学   3篇
地球物理   34篇
地质学   109篇
综合类   1篇
自然地理   19篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   14篇
  2003年   10篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1997年   6篇
  1996年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
61.
The Younger Granites of Yahmid-Um Adawi area, located in the southeastern part of Sinai Peninsula, comprise two coeval Late Neoproterozoic post-collisional alkaline (hypersolvous alkali-feldspar granites; 608–580?Ma) and calc-alkaline (transsolvous monzo- and syenogranites; 635–590?Ma) suites. The calc-alkaline suite granitoids are magnesian and peraluminous to metaluminous, whereas the alkaline ones are magnesian to ferroan alkaline to slightly metaluminous. Both granitoid suites exhibit many of the typical geochemical features of A-type granites such as enrichment in Nb (>20?ppm), Zr (>250?ppm), Zn (>100?ppm) and Ce (>100?ppm) and high 10000*Ga/Al2O3 ratios (>2.6) and Zr?+?Nb?+?Y?+?Ce (>350?ppm). Accessory mineral saturation thermometers demonstrated former crystallization of apatite at high temperatures prior to zircon and monazite separation from the magma for both granitoid suites. The mild zircon saturation temperatures of the studied Younger Granites (around 800?°C) imply low-temperature crustal fusion and incomplete melting of the largely refractory zircon. The two Younger Granite suites were semi-synchronously evolved during the post-collisional stage of the Arabian-Nubian Shield subsequent to the collision between the juvenile shield crust and the older pre-Neoproterozoic continental blocks of west Gondwana. Their parental magmas has been generated by melting of crustal source rocks with minor involvement from mantle, which might participated chiefly as a source of heat necessary for fusion of the crustal precursor. Extensive in-situ gamma-ray spectrometry revealed anomalously high radioactivity of some Younger Granite exposures along Wadi Um Adawi (eU; 388–746?ppm and eTh; 1857–2527?ppm) and pegmatitic pockets pertaining to the calc-alkaline suite (equivalent U and Th; 212–252?ppm and 750–1757?ppm, respectively). The radioactivity of the syngenetic pegmatites arises from the primary radioactive minerals uranothorite and thorite together with the U- and/or Th-bearing minerals zircon, columbite, samarskite and monazite. The anomalously high radioactivity of some Younger Granite exposures in Wadi Um Adawi stem from their appreciable enclosure of the epigenetic uranium minerals metatorbenite and uranophane.  相似文献   
62.
We present new data for the Neoproterozoic mafic intrusion exposed in Wadi Nasb, south Sinai, Egypt (northernmost Arabian–Nubian Shield; ANS). The Nasb mafic intrusion (NMI) intrudes metasediments, Rutig volcanics, and diorite/granodiorite, and is intruded in turn by younger monzogranite and quartz-monzonite. Available geochronological data for the country rocks of the NMI provide a tight constraint on its age, between 619 and 610 Ma, during the hiatus between the lower and upper Rutig volcanics. The NMI is neither deformed nor metamorphosed, indicating post-collisional emplacement, and uralitization by late-magmatic and sub-solidus alteration is restricted to the margins of the intrusion. A quantitative fractionation model indicates a fractionating assemblage of 61% primary amphibole, 10% clinopyroxene, 28% plagioclase, 1% biotite, 0.4% apatite, and 0.15% Fe-Ti oxide. Contrary to the recent studies, we find that the nearby diorite of Gebel Sheikh El-Arab is not co-genetic with the appinitic gabbro of the NMI. Although there are volcanic xenoliths in the NMI, we find no chemical evidence requiring contamination by continental crust. A subduction-related signature in a post-orogenic intrusion requires the inheritance of geochemical tendencies from a previous subduction phase. Given that the fine-grained gabbro of the NMI is consistent with a near-primary mantle melt, we attribute this inheritance to persistence and later melting of the slab-modified mantle domains, as opposed to partial melting and assimilation of the juvenile continental crust. The fine-grained gabbro composition indicates derivation at temperature and pressure conditions similar to the sources of mid-ocean ridge basalts: mantle potential temperature near 1350°C and extent of melting about 7%. Such temperatures, neither so high as to require a plume nor so low as to be consistent with small degrees of melting of a volatile-rich source, are most consistent with a lithospheric delamination scenario, allowing the upwelling of fertile, subduction-modified asthenosphere to depths ≤50 km.  相似文献   
63.
Baker Creek drains water from subarctic Canadian Shield terrain comprised of a mix of exposed Precambrian bedrock, lakes, open black spruce forest and peat filled depressions. Research in the catchment has focused on hydrological processes at the hillslope and catchment scales. Streamflow is gauged from several diverse sub-catchments ranging in size from 9 to 155 km2. The period of record (2003–2019) of streamflow from these sub-catchments extends from 12 to 17 years, and these data are the focus of this note. Such data are unique in this remote region. 2003–2019 was a period that included both historic wet and dry conditions. Observations during such a diversity of conditions are helping to improve understanding of how stream networks that drain this landscape expand and contract in response to short and long hydroclimatic cycles. These data from a distinctly cold and dry region of low relief, thin soils, exposed bedrock and permafrost are a valuable contribution to the global diversity of research catchment data.  相似文献   
64.
Whole-rock geochemical analysis of metavolcanic and plutonic rocks from Mai Kenetal-Negash area, Tigrai, northern Ethiopia was carried out to evaluate their magma type and original tectonic environment. Their major element content has been modified by secondary alteration, and trace and rare-earth elements have been used to investigate their petrogenesis. The low content of compatible elements of the metavolcanic rocks and their relatively high content of incompatible elements and light REE point to a depleted source region, whereas the plutonic rocks show a more pronounced REE fractionation (LaN/LuN >4). Metavolcanic and plutonic rocks seem to be cogenetic. Discriminant diagrams suggest that the majority of the metavolcanic and all the plutonic rocks are members of a calc-alkaline suite developed in a volcanic arc setting. The overall geochemical characteristics of both sets of rocks are consistent with the arc accretion models postulated in Sudan, Egypt and Saudi Arabia for the Neoproterozoic evolution of the Arabian-Nubian Shield.  相似文献   
65.
The Katherina ring complex (KRC) in the central part of south Sinai, Egypt, is a typical ring complex of late Neoproterozoic age (605–580 Ma). It was developed during the final tectono-magmatic stage of the north Arabian–Nubian Shield (ANS) during evolution of the Pan-African crust. The KRC includes Katherina volcanics, subvolcanic bodies, ring dykes and Katherina granitic pluton. The Katherina volcanics represent the earliest stage of the KRC, which was subsequently followed by emplacement of the subvolcanic bodies and ring dykes. The Katherina granitic pluton depicts as the latest evolution stage of the KRC that intruded all the early formed rock units in the concerned area. The Katherina volcanics are essentially composed of rhyolites, ignimbrite, volcanic breccia and tuffs. Mineralogically, the peralkaline rhyolites contain sodic amphiboles and aegirine. The rhyolite whole rock chemistry has acmite-normative character. The subvolcanic bodies of the KRC are represented by peralkaline microgranite and porphyritic quartz syenite. The ring dykes are semicircular in shape and consist mainly of quartz syenite, quartz trachyte and trachybasalt rock types. The Katherina subvolcanic rocks, volcanic rocks as well as the ring dykes are alkaline or/and peralkaline in nature. The alkaline granitic pluton forms the inner core of the KRC, including the high mountainous areas of G. Abbas Pasha, G. Bab, G. Katherina and G. Musa. These mountains are made up of alkaline syenogranite and alkali feldspar granite. The mantle signature recorded in the KRC indicates a juvenile ANS crust partial melting process for the generation of this system. The evolution of the KRC rocks is mainly dominated by crystal fractionation and crustal contamination. Mineral geothermometry points to the high temperature character of the KRC, up to 700–1100 °C.  相似文献   
66.
The Neoproterozoic Allaqi-Heiani suture (800-700 Ma) in the south Eastern Desert of Egypt is the northernmost linear ophiolitic belt that defines an arc-arc suture in the Arabian- Nubian shield (ANS). The Neoproterozoic serpentinized peridotites represent a distinct lithology of dismembered ophiolites along the Allaqi-Heiani suture zone. The alteration of peridotites varies, some contain relicts of primary minerals (Cr-spinel and olivine) and others are extremely altered, especially along thrusts and shear zones, with development of talc, talc-carbonate and quartz-carbonate. The fresh cores of the chromian spinels are rimmed by ferritchromite and Cr- magnetite. The fresh chromian spinels have high Cr# (0.62 to 0.79), while Mg# shows wider variation (0.35-0.59). High Cr# in the relict chromian spinels and Fo content in the primary olivines indicate that they are residual peridotites after extensive partial melting. The studied ophiolitic upper mantle peridotites are highly depleted and most probably underwent high degrees of partial melting at a supra-subduction zone setting. They can be produced by up to -20%-22% dynamic melting of a primitive mantle source. The mineralogical and geochemical features of the studied rocks reflect that the mantle peridotites of the north part of the Wadi Allaqi district are similar to the fore-arc peridotites of a supra-subduction zone.  相似文献   
67.
冻结地层加固法是一种环境影响小、加固效果好的地层加固方法,人工冻结壁的形成是一个复杂的热-力耦合问题。依托实际盾构隧道始发施工中冻结加固工程,采用有限差分软件Flac3D建立数值模型分析了地铁隧道水平冻结施工中温度场随时间的发展和分布特征,同时采用准热-力耦合的方法,分析了冻结施工中地表冻胀隆起变形规律。分析结果表明:冻结壁模拟交圈时间和设计交圈时间基本一致;冻结壁交圈前,地表冻胀隆起位移速率快,冻结壁交圈之后,地表冻胀变形逐渐趋近稳定。计算结论可供设计和施工参考,提供了一种简便的人工冻结加固施工的数值模拟方法。  相似文献   
68.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   
69.
《International Geology Review》2012,54(11):1409-1428
ABSTRACT

The Mauranipur and Babina greenstone belts of the Bundelkhand Craton are formed of the Central Bundelkhand greenstone complex (CBGC). This complex represents tectonic collage which has not been previously studied in depth. The purpose of this study is to contribute to the understanding of the main features of the Archaean crustal evolution of the Bundelkhand Craton. The CBGC consists of two assemblages: (1) the early assemblage, which is composed of basic-ultramafic, rhyolitic–dacitic, and banded iron formation units, and (2) the late assemblage, which is a felsic volcanic unit. The units and assemblages are tectonically unified with epidote–quartz–plagioclase metasomatic rocks formed locally in these tectonic zones.

The early assemblage of the Mauranipur greenstone belt is estimated at 2810 ± 13 Ma, from the U–Pb dating (SHRIMP, zircon) of the felsic volcanics. Also, there are inherited 3242 ± 65 Ma zircons in this rock. It is deduced that this assemblage is related to early felsic subduction volcanism during the Mesoarchaean that occurred in the Bundelkhand Craton.

Zircons extracted from metasomatic rocks in the early assemblage’s high-Mg basalts show a concordant age of 2687 ± 11 Ma. This age is interpreted as a time of metamorphism that occurred simultaneously with an early accretion stage in the evolution of the Mauranipur greenstone belt.

The felsic volcanism, appearing as subvolcanic bodies in the late assemblage of the Mauranipur greenstone belt, is estimated to be 2557 ± 33 Ma from the U–Pb dating (SHRIMP, zircon) of the felsic volcanic rocks. This rock also contains inherited 2864 ± 46 Ma zircons. The late assemblage of the Mauranipur greenstone belt corresponds with a geodynamic setting of active subduction along the continental margin during Neoarchaean.

The late assemblage Neoarchaean felsic volcanic rocks from the Mauranipur and Babina greenstone belts are comparable in age and geochemical characteristics. The Neoarchaean rocks are more enriched in Sr and Ba and are more depleted in Cr and Ni than the Mesoarchaean felsic volcanic rocks of the early assemblage.

Through isotopic dating and the geochemical analysis of the volcanic and metasomatic rocks of the CBGC, this study has revealed two subduction–accretion events, the Meso–Neoarchaean (2.81–2.7 Ga) and Neoarchaean (2.56–2.53 Ga), during the crustal evolution of the Bundelkhand Craton (Indian Shield).  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号