首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   26篇
  国内免费   173篇
测绘学   21篇
大气科学   72篇
地球物理   39篇
地质学   232篇
海洋学   18篇
天文学   418篇
综合类   17篇
自然地理   12篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   5篇
  2019年   10篇
  2018年   19篇
  2017年   23篇
  2016年   16篇
  2015年   42篇
  2014年   32篇
  2013年   52篇
  2012年   34篇
  2011年   61篇
  2010年   67篇
  2009年   68篇
  2008年   59篇
  2007年   58篇
  2006年   44篇
  2005年   37篇
  2004年   46篇
  2003年   35篇
  2002年   10篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   11篇
  1995年   13篇
  1994年   15篇
  1993年   7篇
  1992年   9篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有829条查询结果,搜索用时 15 毫秒
101.
Sang J. Kim  T.R. Geballe  J.H. Kim 《Icarus》2009,202(1):354-357
Jupiter exhibits bright H+3 auroral arcs at 3-4 microns that cool the hot (>1000 K) ionosphere above the ∼10−7 bar level through the infrared bands of this trace constituent. Below the 10−7 bar level significant cooling proceeds through infrared active bands of CH4, C2H2, and C2H6. We report the discovery of 3-micron line emission from these hydrocarbon species in spectra of the jovian south polar region obtained on April 18 and 20, 2006 (UT) with CGS4 on the United Kingdom Infrared Telescope. Estimated cooling rates through these molecules are 7.5×10−3, 1.4×10−3, and , respectively, for a total nearly half that of H+3. We derive a temperature of 450 ± 50 K in the 10−7-10−5 bar region from the C2H2 lines.  相似文献   
102.
V. Mangano  F. Leblanc  C. Barbieri 《Icarus》2009,201(2):424-431
A long term plan of observations of the sodium exosphere of Mercury began in 2002 by using the high resolution echelle spectrograph SARG and a devoted sodium filter at the 3.5 m Galileo National Telescope (TNG) located in La Palma, Canary Islands. This program is meant to investigate the variations of the sodium exosphere appearance under different conditions of observations, namely Mercury's position along its orbit, phase angle and different solar conditions, as reported by previous observations in August 2002 and August 2003 [Barbieri, C., Verani, S., Cremonese, G., Sprague, A., Mendillo, M., Cosentino, R., Hunten, D., 2004. Planet. Space Sci. 52, 1169-1175; Leblanc, F., Barbieri, C., Cremonese, G., Verani, S., Cosentino, R., Mendillo, M., Sprague, A., Hunten, D., 2006. Icarus 185 (2), 395-402].Here we present the analysis of data taken in June 29th and 30th and in July 1st 2005, when Mercury's true anomaly angle (TAA) was in the range 124-130°. The spectra show particularly intense sodium lines with a distinctive peak in emission localized in the southern hemisphere at mid-latitudes. This seems to be a persistent feature related to consecutive favorable IMF conditions inducing localized enhancements of surface sodium density. The comparison with previous data taken by Potter et al. [Potter, A.E., Killen, R.M., Morgan, T.H., 2002. Meteorit. Planet. Sci. 37 (9), 1165-1172] evidences a surprising consistency of the anti-sunward component, which appears to remain constant regardless of the changing illumination and space weather conditions at Mercury.  相似文献   
103.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   
104.
We analyzed a unique, three-dimensional data set of Uranus acquired with the STIS Hubble spectrograph on August 19, 2002. The data covered a full afternoon hemisphere at 0.1 arc-sec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.002 arc-sec and 0.02 nm. We tested our calibration with WFPC2 images of Uranus and found good agreement. We constrained the vertical aerosol structure with radiative transfer calculations. The standard types of models for Uranus with condensation cloud layers did not fit our data as well as models with an extended haze layer. The dark albedo of Uranus at near-infrared methane windows could be explained by methane absorption alone using conservatively scattering aerosols. Ultraviolet absorption from small aerosols in the stratosphere was strongest at high southern latitudes. The uppermost troposphere was almost clear, but showed a remarkable narrow spike of opacity centered on the equator to 0.2° accuracy. This feature may have been related to influx from ring material. At lower altitudes, the feature was centered at 1-2° latitude, suggesting an equatorial circulation toward the north. Below the 1.2 bar level, the aerosol opacity increased some 100 fold. A comparison of methane and hydrogen absorptions contradicted the standard interpretation of methane band images, which assumes that the methane mixing ratio is independent of latitude and attributes reflectivity variations to variations in the aerosol opacity. The opposite was true for the main contrast between brighter high latitudes and darker low latitudes, probing the 1-3 bar region. The methane mixing ratio varied between 0.014 and 0.032 from high to low southern latitudes, while the aerosol opacity varied only moderately with latitude, except for an enhancement at −45° latitude and a decrease north of the equator. The latitudinal variation of methane had a similar shape as that of ammonia probed by microwave observations at deeper levels. The variability of methane challenges our understanding of Uranus and requires reconsideration of previous investigations based on a faulty assumption. Below the 2 bar level, the haze was thinning somewhat. Our global radiative transfer models with 1° latitude sampling fit the observed reflectivities to 2% rms. The observed spectra of two discrete clouds could be modeled by using the background model of the appropriate latitude and adding small amounts of additional opacity at levels near 1.2 bar (southern cloud) and levels as high as 0.1 bar (northern cloud). These clouds may have been methane condensation clouds of low optical depth (∼0.2).  相似文献   
105.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   
106.
J.W. Norwood  N.J. Chanover 《Icarus》2009,203(1):331-335
We obtained near-infrared spectra of Uranus at NASA’s Infrared Telescope Facility during the planet’s September 2006 and September 2007 oppositions. Ratios between the spectra indicate that in 2006, Uranus’ methane windows appeared much brighter in the south than in the north, and that between 2006 and 2007 they grew dimmer in the south and brighter in the north; we interpret these variations to be primarily caused by changing brightness in Uranus’ upper cloud layer near 2 bars.  相似文献   
107.
We have performed the first observation of the CO(3-2) spectral line in the atmosphere of Saturn with the James Clerk Maxwell Telescope. We have used a transport model of the atmosphere of Saturn to constrain the origin of the observed CO. The CO line is best-fit when the CO is located at pressures less than (15±2) mbar with a mixing ratio of (2.5±0.6)×10-8 implying an external origin. By modeling the transport in Saturn’s atmosphere, we find that a cometary impact origin with an impact 200-350 years ago is more likely than continuous deposition by interplanetary dust particles (IDP) or local sources (rings/satellites). This result would confirm that comet impacts are relatively frequent and efficient providers of CO to the atmospheres of the outer planets. However, a diffuse and/or local source cannot be rejected, because we did not account for photochemistry of oxygen compounds. Finally, we have derived an upper limit of ∼1×10-9 on the tropospheric CO mixing ratio.  相似文献   
108.
The migration of moisture in cores of porous homogeneous sandstone of Ledian age (Belgian Eocene, Tertiary) is monitored with PET (Positron Emission Tomography) and micro-focus X-ray radiography. In the case of PET, a nuclear medical imaging technique, 55Co-EDTA (Ethylenediamine Tetraacetic acid) and R-18F were used as water-soluble tracers. The X-ray projection method has evolved from the better-known medical technique and allows a fast and accurate determination of the two-dimensional transient moisture content profiles. Results indicate that both techniques can deliver important information concerning physical processes in situ.  相似文献   
109.
Observations of Saturn's distant moon Phoebe were made at far-ultraviolet (FUV) (1100-1900 Å) and extreme-ultraviolet (EUV) (600-1100 Å) wavelengths by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the Cassini spacecraft flyby on June 11, 2004. These are the first UV spectra of Phoebe and the first detection of water ice on a Solar System surface using FUV wavelengths. The characteristics of water ice in the FUV are presented, and Hapke models are used to interpret the spectra in terms of composition and grain size; the use of both areal and intimate mixing models is explored. Non-ice species used in these models include carbon, ice tholin, Triton tholin, poly-HCN and kerogen. Satisfactory disk-integrated fits are obtained for intimate mixtures of ∼10% H2O plus a non-ice species. Spatially resolved regions of higher (∼20%) and lower (∼5%) H2O ice concentrations are also detected. Phoebe does not display any evidence of volatile activity. Upper limits on atomic oxygen and carbon are 5×1011 and 2×1012 atoms/cm2, respectively, for solar photon scattering. The UVIS detection of water ice on Phoebe, and the ice amounts detected, are consistent with IR measurements and contribute to the evidence for a Phoebe origin in the outer Solar System rather than in the main asteroid belt.  相似文献   
110.
We have used HST/NICMOS to observe approximately 57% of the martian surface in 7 narrow band filters (0.97, 1.08, 1.13, 1.66, 1.90, 2.12, and 2.15 μm) during the 2003 opposition (Ls∼250°) and at a resolution of ∼12 km/pixel. Principal components analysis (PCA) of the dataset has identified regional variability on scales of hundreds of kilometers associated with differences in the near-infrared spectrum of Mars. Visualization of the data in principal component space has allowed us to identify spectral endmembers associated with the south polar cap, the classic bright terrains, northern Syrtis Major, southern Syrtis Major, Tyrrhena Terra, and Acidalia Planitia. The two Syrtis Major endmembers and the Tyrrhena Terra endmember differ in their absolute reflectivities but have the same spectral shape at wavelengths longer than 1.6 μm. The Acidalia endmember is distinct from the other dark terrain endmembers because it exhibits a strong negative near-IR spectral slope. Comparisons with spectral library measurements cannot provide unique constraints on the surface mineralogy for these sparsely-sampled spectral data. However, the observed spectral variations between Tyrrhena Terra and Syrtis Major are consistent with variations in iron- and sulfur-bearing minerals, and the relatively strong negative spectral slope in the spectrum of Acidalia is consistent with the presence of hydrated alteration products. Additional comparison with previous NICMOS observations taken in 1997 at Ls∼150° indicate that the average near-IR spectral slope of the Acidalia region is more negative during the late northern fall than during the mid northern summer. This may indicate seasonal variations in the presence of either adsorbed water or re-hydrated minerals in the regolith of Acidalia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号