首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4980篇
  免费   1378篇
  国内免费   2773篇
测绘学   27篇
大气科学   78篇
地球物理   717篇
地质学   7647篇
海洋学   63篇
天文学   97篇
综合类   328篇
自然地理   174篇
  2024年   49篇
  2023年   149篇
  2022年   245篇
  2021年   247篇
  2020年   280篇
  2019年   316篇
  2018年   297篇
  2017年   322篇
  2016年   361篇
  2015年   381篇
  2014年   424篇
  2013年   343篇
  2012年   470篇
  2011年   406篇
  2010年   373篇
  2009年   389篇
  2008年   263篇
  2007年   362篇
  2006年   361篇
  2005年   292篇
  2004年   330篇
  2003年   300篇
  2002年   250篇
  2001年   226篇
  2000年   260篇
  1999年   282篇
  1998年   209篇
  1997年   185篇
  1996年   151篇
  1995年   148篇
  1994年   118篇
  1993年   111篇
  1992年   83篇
  1991年   32篇
  1990年   35篇
  1989年   21篇
  1988年   19篇
  1987年   16篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1979年   6篇
  1954年   3篇
排序方式: 共有9131条查询结果,搜索用时 15 毫秒
131.
吐哈盆地中央构造带正反转演化特征   总被引:5,自引:3,他引:5  
吐哈盆地中央构造带由火焰山构造和七克台构造组成。中央构造带形成于三叠纪晚期至侏罗纪早期,表现为伸展构造特征,生长断层上盘地层厚度明显大于下盘,并于断层上盘所在的台北凹陷形成沉降中心。晚侏罗世,由于拉萨陆块与欧亚大陆的碰撞作用导致吐哈盆地由伸展盆地转变为挤压盆地,中央构造带也于此时发生构造反转,由早期的伸展正断层转变为挤压逆断层。发生于55Ma的喜山构造事件对天山地区产生了深刻的影响,但影响时间略有滞后,大致发生在晚渐新世至早中新世,中央构造带即在此次构造事件中强烈变形,逆冲出露于地表。  相似文献   
132.
以大别造山带南部菖蒲地区为解剖区,结合区域地质调查分析,建立了包括浅变质岩层、超高压变质岩片在内的构造地层序列—岩片组合。对其组成特征、界面性质、形成时代、变形序列等,进行了较系统阐明,并对叠加褶皱型式及形成机制进行了讨论。  相似文献   
133.
东亚陆缘带构造扩张的深部热力学机制   总被引:6,自引:2,他引:6  
近年来,我国地球科学家提出“陆缘构造扩张”观点,较好的解释了亚洲东部大陆边缘于新生代发生扩张离散运动的原因。本文基于“陆缘构造扩张”观点,探讨东亚陆缘带构造扩张的深部热力学机制。东亚陆缘带是具有强烈岩浆活动和构造变形的扩张带,此构造带的主要地球物理特征是频繁的地震活动和明显的地热异常。东亚陆缘扩张带地震层析成像显示,太平洋板块低角度俯冲到欧亚板块之下并平卧于670km相变界面之上。这种图像可能是俯冲后撤导致陆缘扩张的结果。热模拟及地球动力学计算表明:俯冲后撤时间距今约76Ma,海沟带后撤为陆缘壳体的生长留下空间,并形成东亚陆缘壳体增生扩展的前沿带,陆缘扩张量约700km。  相似文献   
134.
构造应力场转换的成矿地球化学响应   总被引:10,自引:0,他引:10  
以剪切带型金矿为例,基于对中国东部胶东西北部地区及其典型金矿田、金矿床构造应力场与成矿地球化学场的详细研究结果,初步阐释了它们在多重时-空间尺度上的耦合关系。区域尺度上,应力极值区不利于成矿,金矿床就位于应力梯级带,尤其是不同方向应力梯级带的交汇部位。矿田尺度上,成矿物质有从应力高值区向低值区运移的趋势,成矿主期应力梯度的增大有利于成矿元素进一步浓集,应力梯级的强烈变化地段(或时段)往往形成金属元素的大量堆积。矿床尺度上,成矿物质的运移受不同方向剪应力梯级带的叠加影响,金属元素就位于NE和NW向应力梯级带交汇部位缓坡带一侧的次级梯级带之上。多重时-空尺度成矿动力学的深入研究,将可能揭示出这种非线性效应的丰富内涵。  相似文献   
135.
The Hida marginal belt (HMB), which consists of various kinds of fault-bound blocks, is located between the continental massif of the Hida belt and the Mesozoic accretionary complex of the Mino belt in Central Japan. Detailed field investigation reveals that the HMB had grown through the two different movements, i.e., Jurassic dextral and Cretaceous sinistral movements. The Jurassic dextral ductile shear zones run in the southern marginal part of the Hida belt and the northern part of the HMB, whereas the Cretaceous sinistral cataclastic shear zones occur in the southern part of the HMB and the northern marginal part of the Mino belt. Geologic map and field evidence seem to suggest that the Jurassic dextral movement form the fault-bound blocks of the HMB to form the basic structure of the Hida marginal belt, i.e., formation of the ‘proto-HMB.’ Following the dextral movement, the sinistral one restructured the ‘proto-HMB’ to complete the present feature of the Hida marginal belt. The Cretaceous sinistral movement might result in the sinistral collision between the proto-HMB and the Mino belt.  相似文献   
136.
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall, and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.  相似文献   
137.
Abstract P–T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid‐crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P–T conditions of about 7 kbar and >550 °C. Metasedimentary rocks from the overlying Selimiye nappe have maximum P–T conditions of 4 kbar and c. 525 °C near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top‐S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet‐chlorite zone at the base, the chloritoid‐biotite zone and the biotite‐chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite facies metamorphic event but remained active after the peak of metamorphism. 40Ar/39Ar mica ages and the tectonometamorphic relationship with the Eocene Cyclades–Menderes thrust, which occurs above the Selimiye nappe in the study area, suggests an Eocene age of metamorphism in the Selimiye nappe. Metasedimentary rocks of the Çine nappe 20–30 km north of the Selimiye shear zone record maximum P–T conditions of 8–11 kbar and 600–650 °C. An age of about 550 Ma is indicated for amphibolite facies metamorphism and associated top‐N shear in the orthogneiss of the Çine nappe. Our study shows that simple monophase tectonometamorphic fabrics do not always indicate a simple orogenic development of a nappe stack. Preservation in some areas and complete overprinting of those fabrics in other areas apparently occur very heterogeneously.  相似文献   
138.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   
139.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   
140.
Cleavage-fissility perpendicular to bedding is a common feature in the external part of fold-and-thrust belts. Three techniques were used to determine the internal distortion in the frontal Southern Pyrenees: the analysis of strain markers such as burrows and rain drops, the measurement of fissility, and the measurement of anisotropy of magnetic susceptibility (AMS). The comparison of the three techniques showed a good fit although they differ in sensitivity to penetrative strain variations in the range of deformation values explored in the study case. On the regional scale, the values of layer parallel shortening (LPS) derived from the markers analysis are very constant and account for 16–23% of shortening. These values are two to three times larger than the shortening values calculated from the restoration of the macroscopic scale structures and indicate a good decoupling above the Cardona salt Formation. This study permitted an accurate restoration of the low-amplitude el Guix detached anticline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号