首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  国内免费   38篇
地球物理   2篇
地质学   56篇
综合类   1篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有59条查询结果,搜索用时 265 毫秒
21.
朱俊宾  和政军 《地质学报》2017,91(1):232-248
晚二叠世-中三叠世在中亚造山带东段构造演化过程中是重要的转折期,它涉及古亚洲洋的最终闭合、沉积环境剧变等重大地质问题,而上二叠统林西组和中-下三叠统幸福之路组沉积序列记录了相应的构造演化过程。笔者对内蒙古东南部林西地区出露良好的林西组与幸福之路组,采取砂岩样品进行碎屑锆石U-Pb年代学和Lu-Hf同位素研究,解析年代学、沉积物源等信息。研究显示,被认为是三叠系标志层的陆相红色砂泥岩始现于晚二叠世。幸福之路组细砾岩样品最年轻碎屑锆石年龄为241Ma,从而将地层沉积时代上延至中三叠世后期。它与下伏林西组为整合接触关系,但在幸福之路组下部地层中发现微角度不整合,沉积时代存在间断(早、中三叠世之间)。林西组砂岩碎屑锆石U-Pb年龄组成分为4组:254~336Ma、372~528Ma、669~1000Ma和1300~2534Ma,εHf(t)值变化范围较大(-25.6~+17.2)。幸福之路组砂岩碎屑锆石U-Pb年龄集中于241~278Ma,εHf(t)值=+8.6~+16.5,其石炭纪和古元古代碎屑锆石少量。对比研究显示,林西组砂岩除兴蒙造山带物源外,还含有大量华北克拉通物源。与之相反,幸福之路组砂岩物源主要来自林西周边岩浆岩。结合区域地质特征,笔者认为古亚洲洋闭合于晚石炭世之前,晚古生代末是残余陆表浅海环境。内蒙古东南部地区在晚石炭世以来,表现为西伯利亚和华北克拉通联为一体后的陆内裂陷沉积活动及岩浆活动。  相似文献   
22.
The Hangay–Hentey belt is situated in the central Northern Mongolia, and forms part of the Central Asian Orogenic Belt (CAOB). It is internally subdivided into seven terranes, the largest of which are the neighbouring Ulaanbaatar and Tsetserleg terranes. These coeval terranes are mainly composed of Silurian–Devonian accretionary complexes and Carboniferous turbidites. Proposals for their depositional setting range from passive margin through to island arc. A suite of 19 Ulaanbaatar terrane sandstones and mudrocks (Gorkhi and Altanovoo Formations) were collected with the aim of constraining their provenance, source weathering, and depositional setting based on whole-rock major and trace element data, and for comparison with the neighbouring Tsetserleg terrane. New REE analyses were also made of 35 samples from the Ulaanbaatar and Tsetserleg terranes. Geochemically the Ulaanbaatar sandstones are classed as wackes, and most of the mudstones as shales. Geochemical parameters suggest an immature source, similar to that of the Tsetserleg terrane. Geochemical contrasts between sandstones and mudrocks in the Ulaanbaatar sediments are small, and trends on element – Al2O3 variation diagrams are weak. Comparison with average upper continental crust (UCC), major element discriminant scores, and immobile element ratios (Th/Sc, Zr/Sc, Ce/Sc, Ti/Zr) indicate a uniform average source composition between dacite and rhyolite. Maximum Chemical Index of Alteration value in the Ulaanbaatar terrane is ∼65 after correction for K-metasomatism, indicating minimal weathering in a tectonically active source, similar to that of the Tsetserleg terrane. REE data in both terranes show moderate LREE enrichment and flat HREE segments, with negative Eu anomalies somewhat less than those in UCC and PAAS. Chondrite-normalized patterns are very similar to that for average Paleozoic felsic volcanic rock, supporting the relatively felsic source indicated by immobile trace element ratios. Tectonic setting discriminants (K2O/Na2O–SiO2/Al2O3, La–Th–Sc, Th–Sc–Zr) indicate an evolved continental island arc (CIA; A2) environment for both terranes, similar to several other CAOB suites of similar age. This common arc source was situated within the Mongol-Okhotsk Ocean during Silurian–Lower Carboniferous time. The present-day Aleutian arc is a possible modern analogue of the depositional setting.  相似文献   
23.
24.
25.
The Beishan complex is composed of orthogneiss and metagreywacke that both enclose bodies of eclogite and serves as a unique example for comparative petrological study of all these lithologies. The rocks show the earliest regional steep N-S striking fabric (S2) preserved in low strain domains that are reworked by ubiquitous steep N-NE dipping cleavage (S3). The eclogite shows an almost isotropic fabric defined by an M1 assemblage of Grt–Cpx–Amp–Qz–Rt–Ilm that is locally retrogressed to M2-3 amphibolite facies mineral assemblages, with P–T peak at 20–21 kbar and 750–775°C and retrogression to 2–3kbar and 530–550°C. The typical mineral assemblage of the host metagreywackes is Bt–Ms–Pl–Qz−Chl–Ilm±Grt. Rare Al-rich metagreywacke layers are composed of Grt–Ky–St±Sil−And–Bt–Ms–Pl–Qz±Chl±Rt–Ilm giving a P–T path with peak at 8–8.5kbar and ~670°C correlated with the S2 fabric and retrogression to ~2.5kbar and 525–550°C correlated with the S3 foliation. In two eclogite samples, the garnet-whole rock-clinopyroxene Lu–Hf isochrons give ages of 461.9±1.6 Ma and 462.0±6.2 Ma interpreted as reflecting average age of garnet formation, and Sm–Nd isochrons give ages of 453.6±2.7 Ma and 452.8±3.0 Ma interpreted as dating near-peak metamorphism. In metagreywacke, in-situ U–Pb dating of monazite gives two groups of ages of 445–440 Ma (Mnz cores) and 436–429 Ma (Mnz rims), interpreted as reflecting the metamorphic peak and retrogression. Our results show that eclogite was formed during Ordovician by subduction of a continental crust (D1). Eclogite and metagreywacke underwent partly decoupled P–T–t–D paths until their juxtaposition at mid-crustal levels during a first late Ordovician–early Silurian D2 shortening. Coupling of their P–T–t–D paths occurred during exhumation in the Silurian and a second and orthogonal D3 shortening event. The data from the Beishan Orogen are consistent with a collisional intra-Gondwanan orogen located south of the Central Asian Orogenic Belt.  相似文献   
26.
通过1∶5万区域地质调查,对中亚造山带南缘内蒙古锡林浩特乌拉苏太地区发育的大石寨组酸性火山岩进行了野外地质、岩石学、锆石U-Pb同位素年代学、地球化学等研究。LA-ICP-MS锆石U-Pb同位素定年结果显示,该火山岩年龄为287.5±1.4Ma(MSWD=3.1),形成于早二叠世早期。岩石地球化学研究表明,大石寨组火山岩为一套中酸性火山岩,以高硅、富碱、高铝为特征,Ti、Mg、Fe、Ca等元素含量较低。微量元素总体含量较高,具有一致的配分曲线,Rb、Ba、Th、U、K、LREE等大离子亲石元素相对于Nb、Ta、HREE等高场强元素明显富集。稀土元素总量偏高,具有一致的右倾海鸥式配分型式。地球化学特征显示,该套火山岩具有岛弧火山岩的属性。结合大石寨组岩石学及地质学特征,大石寨组火山岩最可能形成于弧后扩张(或弧间)盆地,是早二叠世早期古亚洲洋闭合前洋壳俯冲消减作用的产物。  相似文献   
27.
Zircon SHRIMP U–Pb and in-situ Lu–Hf isotopic analyses via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of a tuff within the Upper Paleozoic from Western Beijing were carried out to give new constraints on volcano eruption ages and source area of the tuffs within the North China block (NCB). SHRIMP U–Pb zircon dating of the tuff yielded a 206Pb/238U weighted mean age of 296 ± 4 Ma (95% confidence, MSWD = 3.3), which is very similar to the emplacement age of the newly discovered Carboniferous calc-alkaline, I-type continental arc granitoid plutons in the Inner Mongolia Paleo-uplift (IMPU) on the northern margin of the NCB. In-situ Lu–Hf analysis results of most zircons from the tuff yielded initial 176Hf/177Hf ratios from 0.282142 to 0.282284 and εHf(t) values from − 15.9 to − 10.7. These Lu–Hf isotopic compositions are very similar to those of the Late Carboniferous granitoids in the IMPU, but are very different to those of the Central Asian Orogenic Belt (CAOB). Together with the sedimentary and tectonic analyses results, we inferred that the source area of the tuffs within the NCB is the IMPU instead of the CAOB. Therefore, some arc volcanoes once existed in the IMPU on northern margin of the NCB during the Late Carboniferous, but they were entirely eroded due to strong exhumation and erosion of the IMPU during the Late Carboniferous to Early Jurassic.  相似文献   
28.
甘立胜  吴泰然  陈彦  张文  张昭昱 《岩石学报》2018,34(11):3359-3374
阿拉善北缘造山带位于中亚造山带最南端,前人鲜有报道的尚丹岩体是认识其构造演化的关键。尚丹岩体中花岗闪长岩的LA-ICP-MS锆石U-Pb年龄为331. 7±0. 9Ma,是在宗乃山-沙拉扎山构造带中获得的最早的晚古生代年龄,指示了早石炭世的岩浆事件。尚丹花岗闪长岩体具有中等硅含量(SiO_2=66. 07%~68. 15%)、高Na_2O(Na_2O/K_2O 1. 6),并相对高CaO(CaO/Na_2O 1),属于准铝质(A/CNK 1,A/NK 1)和中钾钙碱性系列(σ=1. 21~1. 40,K_2O=1. 55%~2. 21%),其岩石薄片中可见角闪石,地球化学和岩相学上都显示出I型花岗岩的特征。岩石的稀土元素含量中等,轻重稀土分异较明显((La/Yb)N=5. 30~6. 62),富集Rb、Th、K、Zr、Hf等元素,亏损Ba、Nb、Ta、P、Ti等元素。样品未出现明显Eu负异常,表明其可能形成于中下地壳的部分熔融。同时,2件全岩样品具有弱负的εNd(t)值(-1. 02、-0. 91),Nd模式年龄tDM1为1. 30~1. 28Ga,1件样品的锆石εHf(t)值为+0. 30~+5. 27,Hf模式年龄tDM2为1. 32~1. 00Ga。结合地球化学分析,尚丹岩体很可能形成于中新元古代地壳的再循环。总的来说,尚丹岩体具有岛弧相关特征,构造判别图解显示其形成于俯冲相关环境,表明阿拉善北缘在早中古生代造山停歇后,晚古生代的俯冲作用至少开始于早石炭世。  相似文献   
29.
The West Junggar orogen,located in the southwestern Central Asian Orogenic Belt(CAOB),preserves an abundant record of tectonic processes associated with the evolution of the Junggar Ocean.In this study,we use detrital zircon U–Pb age data from Ordovician to Carboniferous sandstones in the southern and central West Junggar domains,complemented by literature data,to better constrain the tectonic evolution of the southwestern CAOB.The Kekeshayi,Qiargaye,and Laba formations in the southern West Junggar domain were deposited during the Darriwilian-Sandbian,Katian-Aeronian,and Homerian-Emsian,respectively.Detrital zircon provenances of these formations display a marked shift from the southern West Junggar domain to the Paleo-Kazakhstan Continent(PKC).This suggests that the southern West Junggar intra-oceanic arc might have gradually accreted to the northern margin of the PKC prior to the Emsian,which has significantly contributed to the lateral growth of the PKC.The Carboniferous strata,Xibeikulasi,Baogutu,and Tailegula formations,in the central West Junggar domain represent a coherent sequence of volcaniclastic turbidites and were deposited in a progressively shrinking remnant oceanic basin during the Visean to Moscovian.They contain unimodal detrital zircon distributions and are derived from the local and coeval magmatic rocks in the central West Junggar domain.We propose that the final closure of the Junggar Ocean likely occurred in the end of the Late Carboniferous in response to regional amalgamation events in the southwestern CAOB,which marks the final assembly of the Kazakhstan Orocline.The central and southern West Junggar domains underwent individual evolution in the Paleozoic,and were recombined by the significant intra-continental reworking along the large-scale strike-slip faults.  相似文献   
30.
Late Paleozoic volcanic rocks are well exposed in the Yining Block, NW China, and are predominately composed of andesites, rhyolites and volcaniclastics as well as minor basalts. Study of the petrology, whole-rock geochemistry and zircon U-Pb dating for the Early Carboniferous alkaline basalts from Wusun Mountain, western Yining Block, constrains their petrogenesis and tectonic evolution. The alkaline basalts consist mainly of plagioclases, mostly albite and labradorite, as well as clinopyroxenes and olivines; zircon U-Pb dating indicates their formation at ca. 350 Ma. Geochemically, the basaltic samples have low SiO2 contents, and high TiO2, Al2O3 and alkaline contents, coupled with high Na2O/K2O ratios, displaying an alkaline basalt affinity. They show remarkable LILE enrichment and HFSE depletion. Meantime, these samples have relatively high TFe2O3, MgO, and Mg# values as well as Ni and Cr, relatively high Sm/Yb and U/Th, suggesting origination from a mantle source metasomatized by slab fluids. They formed in a transitional tectonic setting from arc to intraplate, showing a typical affinity of back-arc basin basalts. The alkaline basalts were likely generated in a nascent back-arc extension setting resulting from slab rollback of the southern Tianshan oceanic lithosphere. A bi-directional subduction model seems more reasonable for the evolution of the southern Tianshan Ocean. These new data will provide a new tectonic model for Late Paleozoic tectonic evolution of the western Yining Block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号