首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9101篇
  免费   2317篇
  国内免费   2170篇
测绘学   82篇
大气科学   318篇
地球物理   1233篇
地质学   9233篇
海洋学   852篇
天文学   31篇
综合类   302篇
自然地理   1537篇
  2024年   49篇
  2023年   193篇
  2022年   436篇
  2021年   538篇
  2020年   489篇
  2019年   593篇
  2018年   510篇
  2017年   644篇
  2016年   649篇
  2015年   570篇
  2014年   723篇
  2013年   732篇
  2012年   650篇
  2011年   625篇
  2010年   534篇
  2009年   686篇
  2008年   623篇
  2007年   647篇
  2006年   548篇
  2005年   497篇
  2004年   386篇
  2003年   343篇
  2002年   293篇
  2001年   216篇
  2000年   212篇
  1999年   226篇
  1998年   155篇
  1997年   158篇
  1996年   127篇
  1995年   94篇
  1994年   107篇
  1993年   73篇
  1992年   84篇
  1991年   46篇
  1990年   30篇
  1989年   26篇
  1988年   24篇
  1987年   9篇
  1986年   8篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   6篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
11.
Kunming Basin locates middle of Yunnan altiplano and has a particularity in geography,topographic and geological environment.With the urban dilation quickly,add the reason of the unreasonable city layout,conflicts between environment and urban resources consumption become shrill increasingly.It is human being activities that lead to vulnerability and depravation of geological environment in local.Take a few examples on geological environment to expatiate relationship between urban construction and geological environment carrying capacity,and find a way how to make a better plan for urban sustainable development to achieve new balance between man and nature in local.  相似文献   
12.
1:5万区域地质调查工作中,在柴达木陆块北缘首次发现古元古代变质镁铁—超镁铁质岩,获得成岩年龄为1952±15Ma,其岩石化学、地球化学特征反映出岩浆来源于亏损地幔,反映出该地区克拉通在古元古代(19亿年)发生了一次强烈的裂解(洋)事件,对于研究柴达木盆地北缘元古代结晶基底地质构造演化及进一步探讨柴达木盆地的起源及构造演化过程提供了重要地质线索。  相似文献   
13.
利用断层相关褶皱的构造几何分析方法,对准噶尔盆地南缘山前复杂构造带内基于地震剖面进行了构造解析,搭建了中、东段的构造轮廓和构造组合样式,认为东段阜康断裂带主要表现为至地表的推覆逆掩。由于位移量大部分转移至地表,阜康断裂带的前陆部分无喜山期构造带;西段造山带内的挤压往前陆方向传递过程中以前列式不断释放其位移量,造成在纵向上呈现三排主要的断层相关褶皱带。根据正演平衡地质剖面制作技术对山前复杂构造区地震剖面反射波的构造识别进行了模拟与探讨。  相似文献   
14.
The Donghetang Formation (Upper Devonian) in central Tarim Basin has been thought an important oil and gas reservoir since the abundant oil and gas resources were found in the wells W16, W20, W34, and other fields. However, the sedimentary environment of the Donghetang Formation has been disputed because it suffered from both tidal and fluvial actions and there were not rich fossils in the sandstone. After the authors analyzed sedimentary features by means of drill cores, well logging data, paleosols, and with SEM obseruations, three kinds of sedimentary environments were distinguished: alluvial fan, tide-dominated estuary, and shelf. Particularly, the sedimentary features of tide-dominated estuary were studied in detail. Besides, the authors discussed sedimentary characteristics of the Donghetang Formation which was divided into two fourth-order sequences and five system tracts. At the same time, according to the forming process of five system tracts, the whole vertical evolution and lateral transition of tide-dominated estuary were illustrated clearly. Finally, the reservoir quality was evaluated based on porosity and permeability.  相似文献   
15.
On the basis of the study on areal differentiation of the natural environment of oasis agriculture ecosystems in the Shiyang River Basin, this paper comparatively analyzes the natural productivities, water economic benefits, production efficiency, ecological stabilities and developmental conditions of the Wuwei Oasis agricultural ecosystem in the middle reaches of the river basin and the Minqin Oasis agricultural ecosystem in the lower reaches. Under a same management level and investment of . material and energy, primary productiveness and economic benefits of the former are higher than those of the latter. Construction directions of Wuwei and Minqin oases should be different in order to alleviate the water- use contradiction between the middle and lower reaches. The construction objective of Wuwei Oasis should be efficient irrigated farming production system and Minqin Oasis should become a mixed forestry-pastoral-farming ecosystem taking ecological protection as its major function.  相似文献   
16.
The southwest monsoon that dominated Central Himalaya has preserved loessic silt deposits preserved in patches that are proximal to periglacial areas. The occurrence of such silts suggests contemporary prevalence of cold and dry northwesterly winds. Field stratigraphy, geochemistry, mineral magnetism, infrared stimulated luminescence (IRSL) and radiocarbon dating has enabled reconstruction of an event chronology during the past 20 ka. Three events of loess accretion could be identified. The first two events of loess deposition occurred betweem 20 and 9 ka and were separated by a phase of moderate weathering. Pedogenesis at the end of this event gave rise to a well‐developed soil that was bracketed around 9 to > 4 ka. This was followed by the third phase of loess accretion that occurred around 4 to > 1 ka. Episodes of loess deposition and soil formation are interpreted in terms of changes in the strength of the Indian southwest monsoon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
17.
本文主要依据地形图和航空照片解译,并经已有地质、钻孔资料验证及野外实地考察的方法来研究地形面及其变形特征,由此确定渭河盆地活断层的分布、最新活动特征及活动规律,为地震预报及地震危险性分析提供依据。  相似文献   
18.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
19.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

20.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号