首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4726篇
  免费   1214篇
  国内免费   2370篇
测绘学   121篇
大气科学   1022篇
地球物理   709篇
地质学   5367篇
海洋学   360篇
天文学   39篇
综合类   258篇
自然地理   434篇
  2024年   41篇
  2023年   139篇
  2022年   235篇
  2021年   242篇
  2020年   308篇
  2019年   328篇
  2018年   274篇
  2017年   327篇
  2016年   363篇
  2015年   396篇
  2014年   480篇
  2013年   390篇
  2012年   449篇
  2011年   396篇
  2010年   343篇
  2009年   312篇
  2008年   323篇
  2007年   347篇
  2006年   319篇
  2005年   264篇
  2004年   285篇
  2003年   218篇
  2002年   191篇
  2001年   170篇
  2000年   195篇
  1999年   214篇
  1998年   157篇
  1997年   128篇
  1996年   112篇
  1995年   89篇
  1994年   66篇
  1993年   64篇
  1992年   44篇
  1991年   22篇
  1990年   21篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1980年   2篇
  1978年   2篇
  1954年   3篇
排序方式: 共有8310条查询结果,搜索用时 93 毫秒
921.
印度洋偶极子研究进展综述   总被引:10,自引:2,他引:8  
印度洋偶极子(IOD)是影响亚洲气候异常的重要系统之一。自1999年IOD提出以来,国内外学者对其形成机理及其与ENSO相互作用的研究取得了很大进展。综述了近年来国内外学者关于印度洋偶极子的定义、时空分布特征、形成机理、与ENSO的关系、对东亚气候的影响等问题的研究成果,提出了目前该领域存在的科学问题。  相似文献   
922.
将有限区域流函数、速度势求解中常用的两种张驰法(即理查逊法和加速利布曼法)与调和—余弦谱展开法(H-C法)进行了比较,理论研究表明:H-C法单独考虑边界影响分量,物理意义明确,且不会丢失边界上的天气系统;从计算上看,H-C法重建的风场能精确还原原始风场,且计算效率明显高于两种张驰法,即收敛更快。通过在台风Bilis(0604)暴雨增幅过程诊断中的应用发现,常用的两种张驰迭代方法在求解有限区域流函数和速度势的问题上效果都不是很好,即:用理查逊法和加速利布曼法计算的流函数和速度势重建的风场与原始风场差别较大,不能准确还原原始风场;用H-C法不仅计算效率高,还原的风场与原始风场差异极小,且不受南边界较强的西南季风涌影响,在暴雨增幅前期能较好地反映与暴雨增幅相关的强辐合信号。因此,可用H-C法计算得到的无辐散风和无旋风对有限区域的天气系统进行更深入的动力结构分析。  相似文献   
923.
This study investigates the projected changes in interannual variability of South Asian summer monsoon and changes of ENSO-monsoon relationships in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and A2, respectively, by analyzing the simulated results of twelve Coupled Model Intercomparison Project Phase 3 (CMIP3) coupled models. The dynamical monsoon index (DMI) was adopted to describe the interannual variability of South Asian summer monsoon, and the standard dev...  相似文献   
924.
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China....  相似文献   
925.
The relationship between dust weather frequency (DWF), which denotes the number of days of dust weather events, over Beijing and the East Asian Monsoon (EAM) was studied using DWF data for Beijing during the period 1951--2006. Results show that, during this period, the blowing-dust weather frequency (BDWF), as well as the indices of East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM), all decreased considerably, with a t-test confidence level of 99%. The correlation coefficients between the chosen EAWM index and BDWF over Beijing in winter and the following spring were 0.34 and 0.33, respectively, with significance levels of 0.01 and 0.02, respectively. For the chosen EASM index and BDWF, these correlation coefficients were 0.51 and 0.45, respectively, with both at a confidence level exceeding 99.9%. With the linear trends removed, the values (in the same order as above) were 0.14, 0.14, -0.12, and -0.09, all not significant at the 95% confidence level. Clearly, the EAM relates mainly to DWF over long timescales. To a certain extent, the EAM might have some impact on DWF by affecting the associated surface air temperature and precipitation during the corresponding time period in sand-dust source regions at the interannual scale. A stronger (weaker) EAWM might advance (suppress) the occurrence of DWF, and the opposite for the EASM.  相似文献   
926.
The characteristics of moisture transport and budget of widespread heavy rain and local heavy rain events in Northeast China are studied using the NCEP--NCAR reanalysis 6-hourly and daily data and daily precipitation data of 200 stations in Northeast China from 1961--2005. The results demonstrate that during periods with widespread heavy rain in Northeast China, the Asian monsoon is very active and the monsoonal northward moisture transport is strengthened significantly. The widespread heavy rainfall obtains enhanced water vapor supply from large regions where the water vapor mainly originates from the Asian monsoon areas, which include the East Asian subtropical monsoon area, the South China Sea, and the southeast and southwest tropical monsoon regions. There are several branches of monsoonal moisture current converging on East China and its coastal areas, where they are strengthened and then continue northward into Northeast China. Thus, the enhanced northward monsoonal moisture transport is the key to the widespread heavy rain in Northeast China. In contrast, local heavy rainfall in Northeast China derives water vapor from limited areas, transported by the westerlies. Local evaporation also plays an important role in the water vapor supply and local recycling process of moisture. In short, the widespread heavy rains of Northeast China are mainly caused by water vapor advection brought by the Asian monsoon, whereas local heavy rainfall is mainly caused by the convergence of the westerly wind field.  相似文献   
927.
近45年华中地区不同级别强降水事件变化趋势   总被引:7,自引:2,他引:5       下载免费PDF全文
利用华中五省84个测站1961—2005年逐日降水资料,通过分位值法、趋势系数法、蒙特卡洛统计检验法、曼-肯德尔法、小波分析等现代统计诊断方法,分析了华中地区不同级别强降水的时空变化趋势、突变和周期特征。结果表明:随着分位值减小,降水量、日数的平均值和均方差逐渐减小,变差系数逐渐增大;而强度的3项指标均逐渐增大;在空间分布上,降水量自河南向湖南和江西逐渐增大;日数自北向南逐渐增大;强度以湖北东部至江西北部的长江中下游一线以及湖南西北部局部地区为高值区;区域平均的降水量、日数和强度均呈增加趋势,但不同测站表现不同;降水量一致在1993年发生突变,呈增多趋势;日数在20世纪80年代末、90年代初发生突变;强度自1994年开始增强,21世纪后加强、减弱现象交替出现;降水量、日数和强度有12~14年的年代际变化和6~9年的短期变化。  相似文献   
928.
Source identification of PM2.5 particles measured in Gwangju, Korea   总被引:1,自引:0,他引:1  
The UNMIX and Chemical Mass Balance (CMB) receptor models were used to investigate sources of PM2.5 aerosols measured between March 2001 and February 2002 in Gwangju, Korea. Measurements of PM2.5 particles were used for the analysis of carbonaceous species (organic (OC) and elemental carbon (EC)) using the thermal manganese dioxide oxidation (TMO) method, the investigation of seven ionic species using ion chromatography (IC), and the analysis of twenty-four metal species using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS). According to annual average PM2.5 source apportionment results obtained from CMB calculations, diesel vehicle exhaust was the major contributor, accounting for 33.4% of the measured PM2.5 mass (21.5 μg m− 3), followed by secondary sulfate (14.6%), meat cooking (11.7%), secondary organic carbon (8.9%), secondary nitrate (7.6%), urban dust (5.5%), Asian dust (4.4%), biomass burning (2.8%), sea salt (2.7%), residual oil combustion (2.6%), gasoline vehicle exhaust (1.9%), automobile lead (0.5%), and components of unknown sources (3.4%). Seven PM2.5 sources including diesel vehicles (29.6%), secondary sulfate (17.4%), biomass burning (14.7%), secondary nitrate (12.6%), gasoline vehicles (12.4%), secondary organic carbon (5.8%) and Asian dust (1.9%) were identified from the UNMIX analysis. The annual average source apportionment results from the two models are compared and the reasons for differences are qualitatively discussed for better understanding of PM2.5 sources.Additionally, the impact of air mass pathways on the PM2.5 mass was evaluated using air mass trajectories calculated with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory model. Source contributions to PM2.5 collected during the four air mass patterns and two event periods were calculated with the CMB model and analyzed. Results of source apportionment revealed that the contribution of diesel traffic exhaust (47.0%) in stagnant conditions (S) was much higher than the average contribution of diesel vehicle exhaust (33.4%) during the sampling period. During Asian dust (AD) periods when the air mass passed over the Korean peninsula, Asian dust and secondary organic carbon accounted for 25.2 and 23.0% of the PM2.5 mass, respectively, whereas Asian dust contributed only 10.8% to the PM2.5 mass during the AD event when the air mass passed over the Yellow Sea. The contribution of biomass burning to the PM2.5 mass during the biomass burning (BB) event equaled 63.8%.  相似文献   
929.
A study has been carried out on water soluble ions, trace elements, as well as PM2.5 and PM2.5–10 elemental and organic carbon samples collected daily from Central Taiwan over a one year period in 2005. A source apportionment study was performed, employing a Gaussian trajectory transfer coefficient model (GTx) to the results from 141 sets of PM2.5 and PM2.5–10 samples. Two different types of PM10 episodes, local pollution (LOP) and Asian dust storm (ADS) were observed in this study. The results revealed that relative high concentrations of secondary aerosols (NO3, SO42− and NH4+) and the elements Cu, Zn, Cd, Pb and As were observed in PM2.5 during LOP periods. However, sea salt species (Na+ and Cl) and crustal elements (e.g., Al, Fe, Mg, K, Ca and Ti) of PM2.5–10 showed a sharp increase during ADS periods. Anthropogenic source metals, Cu, Zn, Cd, Pb and As, as well as coarse nitrate also increased with ADS episodes. Moreover, reconstruction of aerosol compositions revealed that soil of PM2.5–10 elevated approximately 12–14% in ADS periods than LOP and Clear periods. A significantly high ratio of non-sea salt sulfate to elemental carbon (NSS-SO42−/EC) of PM2.5–10 during ADS periods was associated with higher concentrations of non-sea-salt sulfates from the industrial regions of China. Source apportionment analysis showed that 39% of PM10, 25% of PM2.5, 50% of PM2.5–10, 42% of sulfate and 30% of nitrate were attributable to the long range transport during ADS periods, respectively.  相似文献   
930.
Based on NCEP/NCAR reanalysis data, the interdecadal variability of Hadley circulation (HC) and its association with East Asian temperature in winter are investigated. Results indicate that the Northern Hemisphere winter HC underwent apparent change in the 1970s, with transition occurring around 1976/77. Along with interdecadal variability of HC, its linkage to surface air temperature (SAT) in East Asia also varied decadally, from weak relations to strong relations. Such a change may be related to the interaction between HC and the atmospheric circulation system over the Philippines, which is associated with the East Asian winter monsoon (EAWM). Before the 1970s, the connection between HC and the anticyclonic circulation around the Philippines was insignificant, but after the late 1970s their linkage entered a strong regime. The intensification of this connection may therefore be responsible for the strong relations between HC and East Asian winter temperatures after the late 1970s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号