首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3252篇
  免费   620篇
  国内免费   1193篇
测绘学   33篇
大气科学   205篇
地球物理   472篇
地质学   3210篇
海洋学   156篇
天文学   18篇
综合类   101篇
自然地理   870篇
  2024年   24篇
  2023年   59篇
  2022年   139篇
  2021年   140篇
  2020年   173篇
  2019年   200篇
  2018年   181篇
  2017年   199篇
  2016年   179篇
  2015年   199篇
  2014年   229篇
  2013年   252篇
  2012年   223篇
  2011年   199篇
  2010年   155篇
  2009年   236篇
  2008年   228篇
  2007年   225篇
  2006年   231篇
  2005年   220篇
  2004年   201篇
  2003年   163篇
  2002年   157篇
  2001年   110篇
  2000年   132篇
  1999年   123篇
  1998年   97篇
  1997年   73篇
  1996年   62篇
  1995年   54篇
  1994年   50篇
  1993年   42篇
  1992年   31篇
  1991年   14篇
  1990年   17篇
  1989年   12篇
  1988年   11篇
  1987年   8篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有5065条查询结果,搜索用时 15 毫秒
1.
针对信息系统安全的考虑,介绍在PowerBuilder环境中对用户权限的具体控制.  相似文献   
2.
 The Middle Jurassic Kirkpatrick flood basalts and comagmatic Ferrar intrusions in the Transantarctic Mountains represent a major pulse of tholeiitic magmatism related to early stages in the breakup of Gondwana. A record of the volcano-tectonic events leading to formation of this continental flood-basalt province is provided by strata underlying and only slightly predating the Kirkpatrick lavas. In the central Transantarctic Mountains, the lavas rest on widespread (≥7500 km2) tholeiitic pyroclastic deposits of the Prebble Formation. The Prebble Formation is dominated by lahar deposits and is an unusual example of a regionally developed basaltic lahar field. Related, partly fault-controlled pyroclastic intrusions cut underlying strata, and vents are represented by the preserved flanks of two small tephra cones associated with a volcanic neck. Lahar and air-fall deposits typically contain 50–60% accidental lithic fragments and sand grains derived from underlying Triassic – Lower Jurassic strata in the upper part of the Beacon Supergroup. Juvenile basaltic ash and fine lapilli consist of nonvesicular to scoriaceous tachylite, sideromelane, and palagonite, and have characteristics indicating derivation from hydrovolcanic eruptions. The abundance of accidental debris from underlying Beacon strata points to explosive phreatomagmatic interaction of basaltic magma with wet sediment and groundwater, which appears to have occurred in particular where rising magma intersected upper Beacon sand aquifers. Composite clasts in the lahar deposits exhibit complex peperitic textures formed during fine-scale intermixing of basaltic magma with wet sand and record steps in subsurface fuel-coolant interactions leading to explosive eruption. The widespread, sustained phreatomagmatic activity is inferred to have occurred in a groundwater-rich topographic basin linked to an evolving Jurassic rift zone in the Transantarctic Mountains. Coeval basaltic phreatomagmatic deposits of the Mawson and Exposure Hill Formations, which underlie exposures of the Kirkpatrick Basalt up to 1500 km to the north along strike in Victoria Land, appear to represent other parts of a regional, extension-related Middle Jurassic phreatomagmatic province which developed immediately prior to rapid outpouring of the flood basalts. This is consistent with models which assign an important role to lithospheric stretching in the generation of flood-basalt provinces. Received: 28 August 1995 / Accepted: 18 April 1996  相似文献   
3.
熊耳群为玄武粗安岩-英安流纹岩组合,大红口组为粗面岩组合,属B类的过渡型拉斑玄武岩浆系列,具以太华群为岩浆房的壳幔混染型成因;秦岭群和宽坪群为变拉斑玄武岩建造,属A类拉斑玄武岩浆系列,具幔源型成因;二郎坪群和丹凤群属细碧岩-石英角斑岩建造,C类石英角斑岩浆系列与A类拉斑玄武岩浆系列共存,具壳幔双层混合型成因。  相似文献   
4.
The southwest monsoon that dominated Central Himalaya has preserved loessic silt deposits preserved in patches that are proximal to periglacial areas. The occurrence of such silts suggests contemporary prevalence of cold and dry northwesterly winds. Field stratigraphy, geochemistry, mineral magnetism, infrared stimulated luminescence (IRSL) and radiocarbon dating has enabled reconstruction of an event chronology during the past 20 ka. Three events of loess accretion could be identified. The first two events of loess deposition occurred betweem 20 and 9 ka and were separated by a phase of moderate weathering. Pedogenesis at the end of this event gave rise to a well‐developed soil that was bracketed around 9 to > 4 ka. This was followed by the third phase of loess accretion that occurred around 4 to > 1 ka. Episodes of loess deposition and soil formation are interpreted in terms of changes in the strength of the Indian southwest monsoon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
5.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
6.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

7.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
8.
新疆塔中南坡奥陶系的地层缺失和沉积相变化   总被引:4,自引:0,他引:4  
按照奥陶系内部6个组沉积的时间片段拟定塔中南坡不同区块存在不同程度的缺失。部分关键层段的牙形石和几丁虫组合特征证明一间房组和恰尔巴克组在塔中部分井区是存在的,但恰尔巴克组的分布范围最狭窄。总体上,塔中南坡隆起区地层缺失较多,古城墟隆起基本完整。据缺失状况和岩相展布,显示塔中南坡的沉积单元具有由东往西迁移的特征,且各时段迁移的距离与速度存在较大差异。  相似文献   
9.
湘中奥陶纪沉积锰矿带位于湖南省安化县、桃江县、宁乡县境内,呈近EW向展布,矿带内锰矿以质量好而著称。该成矿带的成锰沉积盆地受控于加里东期张性断裂系统,为一断陷盆地。盆地内发育一组NW向同沉积断裂,形成了一系列断陷槽,控制了沉积岩相的分布。锰矿主要产于盆地中心亚相的黑色页岩夹碳酸锰矿微相内。据矿带中锰矿的地质和地球化学特征以及微量元素和碳、氧、锶同位素组成,笔者认为,该锰矿属于热水沉积成因。综合对比表明,该成矿带具有良好的成矿条件和值得注意的资源潜力,有可能发展为大型锰成矿带。  相似文献   
10.
湖南雪峰山地区沈家垭金矿成矿学及年代学研究   总被引:2,自引:0,他引:2  
陈富文  戴平云  梅玉萍  李华芹  王登红  蔡红 《地质学报》2008,82(7):906-2008-01-30
湘西沈家垭大型金矿是雪峰山地区颇具代表性的金矿床介绍,矿体分布于新元古界板溪群马底驿组第四岩性段中,矿化作用严格受北东东向沃溪和香草湾等深大断裂和唐浒坪复式背斜的联合控制。本次研究获得该矿床含金石英脉RbSr等时线年龄为90.6±3.2Ma,表明成矿作用发生于晚白垩世,成矿作用可能与燕山期区域性大规模的逆冲推覆作用密切相关,矿床成因类型为构造热液型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号