首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   13篇
  国内免费   3篇
地球物理   12篇
地质学   53篇
海洋学   17篇
综合类   1篇
  2020年   1篇
  2018年   1篇
  2017年   8篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   4篇
  2006年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1985年   3篇
  1978年   1篇
排序方式: 共有83条查询结果,搜索用时 531 毫秒
51.
塑料套管混凝土桩挤土效应现场试验   总被引:2,自引:0,他引:2  
结合申嘉湖杭高速公路练杭段加固软土地基工程开展了塑料套管混凝土桩挤土效应的现场试验研究。设地表观测点观测桩打设过程中桩周土体隆起情况;采用绑定仪器的方形木桩等效模拟塑料套管混凝土桩研究不同时刻桩侧挤土压力和孔隙水压力的变化。结果表明打桩过程中在距桩中心约2.2倍沉管外径处地面隆起量最大,约为沉管外径的17.2%;打设完成第一根相邻桩(距离1.6 m)桩侧土压力及孔隙水压力增大10%~20%,其后随着打设桩距木桩距离的渐远,两次打桩后的土压曲线和孔压曲线变化不大,仅在下部桩端处变化较大;场地内桩打设完毕后,沉桩引起的超孔隙水压力逐步消散。根据实测数据建议塑料套管环刚度控制在8~16级。  相似文献   
52.
Chalk compaction is often assumed to be controlled by a combination of mechanical and effective stress-related chemical processes, the latter commonly referred to as pressure solution. Such effective stress-driven compaction would result in elevated porosities in overpressured chalks compared with otherwise identical, but normally pressured chalks. The high porosities that are frequently observed in overpressured North Sea chalks have previously been reported to reflect such effective stress-dependent compaction.However, several wells with deeply buried chalk sequences also exhibit low porosities at high pore pressures. To investigate the possible origins of these overpressures, basin modeling was performed in a selected well (NOR 1/3-5) offshore Norway. This modeling was based on both effective stress-driven mechanical porosity reduction, which enables modeling of disequilibrium compaction, and on stress-insensitive chemical compaction where the porosity reduction is caused by thermally activated diagenesis.The modeling has demonstrated that the present day porosities and pore pressures of the chalks could be successfully replicated with mechanical porosity loss as the only process leading to chalk porosity reduction. However, the modeled porosity and fluid pressure history of the sediments deviated significantly from the porosity and pore pressure versus depth relationships observed in non-reservoir North Sea chalks today. To the contrary, modeling which was based on thermally activated porosity loss due to diagenesis (as a supplement to mechanical compaction), resulted in modeled chalk histories that are consistent with present day observations.It was therefore inferred that disequilibrium compaction could not account for all of the pore pressure development in overpressured chalks in the study area. The observation that modeling including temperature-controlled diagenetic porosity reduction gave plausible results, suggests that such porosity reduction may in fact be operating in chalks as well as in clastic rocks. If this is correct, then improved methods for pore pressure identification and fluid flow analysis in basins containing chalks should be developed.  相似文献   
53.
A great difference exists between the hydrocarbon charging characteristics of different Tertiary lacustrine turbidites in the Jiyang Super-depression of the Bohai Bay Basin, east China. Based on wireline log data, core observation and thin-section analyses, this study presents detailed reservoir property data and their controlling effects from several case studies and discusses the geological factors that govern the hydrocarbon accumulation in turbidite reservoirs. The lacustrine fluxoturbidite bodies investigated are typically distributed in an area of 0.5–10 km2, with a thickness of 5–20 m. The sandstones of the Tertiary turbidites in the Jiyang Super-depression have been strongly altered diagenetically by mechanical compaction, cementation and mineral dissolution. The effect of compaction caused the porosity to decrease drastically with the burial depths, especially during the early diagenesis when the porosity was reduced by over 15%. The effect of cementation and mineral dissolution during the late-stage diagenesis is dominated by carbonate cementation in sandstones. High carbonate cement content is usually associated with low porosity and permeability. Carbonate dissolution (secondary porosity zone) and primary calcite dissolution is believed to be related to thermal maturation of organic matter and clay mineral reactions in the surrounding shales and mudstone. Two stages of carbonate cementation were identified: the precipitation from pore-water during sedimentation and secondary precipitation in sandstones from the organic acid-dissolved carbonate minerals from source rocks. Petrophysical properties have controlled hydrocarbon accumulation in turbidite sandstones: high porosity and permeability sandstones have high oil saturation and are excellent producing reservoirs. It is also noticed that interstitial matter content affects the oil-bearing property to some degree. There are three essential elements for high oil-bearing turbidite reservoirs: excellent pore types, low carbonate cement (<5%) and good petrophysical properties with average porosity >15% and average permeability >10 mD.  相似文献   
54.
In an attempt to derive more information on the parameters driving compaction, this paper explores the feasibility of a method utilizing data on compaction-induced subsidence. We commence by using a Bayesian inversion scheme to infer the reservoir compaction from subsidence observations. The method’s strength is that it incorporates all the spatial and temporal correlations imposed by the geology and reservoir data. Subsequently, the contributions of the driving parameters are unravelled. We apply the approach to a synthetic model of an upscaled gas field in the northern Netherlands. We find that the inversion procedure leads to coupling between the driving parameters, as it does not discriminate between the individual contributions to the compaction. The provisional assessment of the parameter values shows that, in order to identify adequate estimate ranges for the driving parameters, a proper parameter estimation procedure (Markov Chain Monte Carlo, data assimilation) is necessary.  相似文献   
55.
This study presents the application of different methods (simple–multiple analysis and artificial neural networks) for the estimation of the compaction parameters (maximum dry unit weight and optimum moisture content) from classification properties of the soils. Compaction parameters can only be defined experimentally by Proctor tests. The data collected from the dams in some areas of Nigde (Turkey) were used for the estimation of soil compaction parameters. Regression analysis and artificial neural network estimation indicated strong correlations (r 2 = 0.70–0.95) between the compaction parameters and soil classification properties. It has been shown that the correlation equations obtained as a result of regression analyses are in satisfactory agreement with the test results. It is recommended that the proposed correlations will be useful for a preliminary design of a project where there is a financial limitation and limited time.  相似文献   
56.
Fault-propagation folding associated with an upward propagating fault in the Gilbertown graben system is revealed by well-based 3-D subsurface mapping and dipmeter analysis. The fold is developed in the Selma chalk, which is an oil reservoir along the southern margin of the graben. Area-depth-strain analysis suggests that the Cretaceous strata were growth units, the Jurassic strata were pregrowth units, and the graben system is detached in the Louann Salt.The growth trishear model has been applied in this paper to study the evolution and kinematics of extensional fault-propagation folding. Models indicate that the propagation to slip (p/s) ratio of the underlying fault plays an important role in governing the geometry of the resulting extensional fault-propagation fold. With a greater p/s ratio, the fold is more localized in the vicinity of the propagating fault. The extensional fault-propagation fold in the Gilbertown graben is modeled by both a compactional and a non-compactional growth trishear model. Both models predict a similar geometry of the extensional fault-propagation fold. The trishear model with compaction best predicts the fold geometry.  相似文献   
57.
Understanding and predicting surface movement is important both technically and for social reasons. The shallow processes contributing to subsidence include construction works, peat oxidation, clay compaction, and groundwater withdrawal; deep causes are hydrocarbon and salt production. We describe an inversion procedure we have devised to disentangle the deep and shallow causes of surface movement. It employs a Bayesian inversion scheme, using forward models and other ‘a priori’ information about shallow and deep compaction. Parameter estimation thus takes place at two different depths, thereby disentangling the deep and shallow compaction processes responsible for surface movement. The uncertainty in the surface measurements and ‘a priori’ estimates is naturally incorporated. Furthermore, spatial and temporal correlations can be taken into account through inclusion of the covariance matrix. The inversion scheme is demonstrated for two synthetic cases. The first combines a compacting gas field and a compacting shallow peat layer. We demonstrate that assumptions on the shape of the subsidence bowl are not necessary. We also show how neglecting either deep or shallow causes of subsidence can produce spurious results. The advantage of using the ‘a priori’ estimates of the compaction and the covariance matrix obtained by Monte Carlo simulations is demonstrated with a second synthetic example involving two polders and different depths of their water table. A robust solution is obtained for each polder unit, while a simpler (and faster) ‘a priori’ estimate based on the expected average clay thickness fails to reproduce the actual compaction. Monte Carlo simulations can also be applied to compaction in depleting gas reservoirs. Information on spatial correlations is often available, even when the absolute values of the ‘a priori’ compaction data are quite uncertain. Explicitly incorporating such ‘a priori’ known spatial correlations improves the result significantly.  相似文献   
58.
The mudrock log-derived compaction curve is a significant tool for investigating the primary migration of hydrocarbon, predicting fluid overpressure, estimating formation erosion thicknesses and restoring the buried history and paleo-structure of a basin. However, the presence of kerogen in organic-rich shales can create typically high logging values of the acoustic transit time. Thus, the abnormally high values of the acoustic transit time for organic-rich rocks may not truly reflect the porosity variations of subsurface rocks, leading to great uncertainties in the understanding of the mudstone compaction and a certain amount of error in the abnormal fluid pressure estimation when using the mudrock log-derived compaction curve. Therefore, it is necessary to recalibrate the mudstone compaction curve by eliminating the increment of the acoustic transit time caused by the kerogen content of organic-rich mudstones. Taking the southwest Ordos Basin as an example, this paper presents a new equivalent volume model based on the composition of organic-rich shale in which the kerogen content is also considered. Based on the quantitative relationship between the rock composition and the acoustic transit time, a quantitative formula for calculating the acoustic transit time increment caused by the kerogen is derived. This formula shows that the increment depends not only on the organic content but also on the occurrence state, pore size, pore fluid composition and other factors. X-ray diffraction (XRD) data were used to determine the main mineral composition of the mudstone and to calculate the acoustic transit time of the rock skeleton. Then, the mudstone compaction curve in the Zhenjing area was calibrated by combining the measured porosity and total organic carbon (TOC) of the mudstone based on the correction formula. The compaction characteristics varied significantly between before and after the calibration. The slope of the normal compaction trend (NCT) line decreased by 30–55%, and the acoustic transit time deviation from the NCT in the undercompaction interval decreased significantly. The overpressure at the maximum burial depth estimated by the equivalent depth method is in better agreement with the results obtained by numerical simulation after the calibration, and the porosity determined from the well log after the calibration is also closer to the true measured value. The method proposed in this paper is of great significance for improving the reliability and accuracy of compaction research on organic-rich mudstones, especially for the accurate estimation of abnormal pressure in the source rock layer. Additionally, it can be used as an effective reference for mudstone compaction studies in similar geological settings areas or basins.  相似文献   
59.
M. Rossi  O. Vidal  B. Wunder  F. Renard   《Tectonophysics》2007,441(1-4):47-65
Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 °C with varying amounts of fluid. Several runs were performed in order to investigate the effects of time, fluid content, pressure and temperature, by varying one of these parameters and holding the others fixed. In order to compare the aggregates with natural materials, similar experiments were also performed using quartz sand instead of glass spheres. Experiments with quartz show evidence of IPS, but the strain could not be quantified. Experiments with glass spheres show evidence of several types of deformation processes: both brittle (fracturing) and ductile (plastic flow and fluid-enhanced deformation, such as IPS). In experiments with a large amount of water (≥ 5 vol.%), dissolution and recrystallization of the glass spheres also occurred, coupled with crystallization of new material filling the initial porosity. Experiments performed with a fluid content of less than 1 vol.% indicate creep behavior that is typical of glass deformation, following an exponential law. These experiments can also be made to fit a power law for creep, with a stress exponent of n = 10.5 ± 2.2 in both dry and wet experiments. However, the pre-factor of the power law creep increases 5 times with the addition of water, showing the strong effect of water on the deformation rate. These simple and low-cost experiments provide new insights on the rheology of soda-lime glass, which is used in analogue experiments, and of glass-bearing rocks under mid-crustal PT conditions. They also highlight the strong enhancement of plasticity of natural rocks in presence of fluid or of a glassy phase.  相似文献   
60.
The literature pertaining to volume change during diagenesis of clastic sediments is reviewed with respect to the problem of calculating pre- and syn-compaction thicknesses of sediments for basin reconstruction and stragraphic correlation studies. Four major mechanisms for volume change are identified: mechanical compaction, mechanical dissolution, chemical dissolution and phase change. The first two of these are found to be strongly dependent on the effective stress whilst the latter two show at least a pressure dependence. Quantification of the relationships between porosity and depth of burial of a sediment seems to be possible only for specific examples of the first of these processes at present. This quantification is dealt with in the accompanying related publication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号