首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8600篇
  免费   1851篇
  国内免费   1343篇
测绘学   200篇
大气科学   718篇
地球物理   3529篇
地质学   4454篇
海洋学   1136篇
天文学   61篇
综合类   352篇
自然地理   1344篇
  2024年   24篇
  2023年   91篇
  2022年   204篇
  2021年   320篇
  2020年   351篇
  2019年   375篇
  2018年   323篇
  2017年   382篇
  2016年   345篇
  2015年   360篇
  2014年   542篇
  2013年   669篇
  2012年   426篇
  2011年   521篇
  2010年   451篇
  2009年   550篇
  2008年   639篇
  2007年   539篇
  2006年   566篇
  2005年   455篇
  2004年   429篇
  2003年   374篇
  2002年   356篇
  2001年   307篇
  2000年   286篇
  1999年   284篇
  1998年   247篇
  1997年   209篇
  1996年   201篇
  1995年   173篇
  1994年   138篇
  1993年   136篇
  1992年   108篇
  1991年   81篇
  1990年   85篇
  1989年   59篇
  1988年   53篇
  1987年   24篇
  1986年   16篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1980年   10篇
  1979年   3篇
  1978年   23篇
  1977年   7篇
  1972年   1篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
The Hellenic plate boundary region, located in the collision zone between the Nubian/Arabian and Eurasian lithospheric plates, is one of the seismo-tectonically most active areas of Europe. During the last 15 years, GPS measurements have been used to determine the crustal motion in the area of Greece with the aim to better understand the geodynamical processes of this region. An extended reoccupation network covering whole Greece has been measured periodically in numerous GPS campaigns since the late eighties, and a continuous GPS network has been operated in the region of the Ionian Sea since 1995. In this paper, we present a new detailed high-quality solution of continuous and campaign-type measurements acquired between 1993 and 2003. During the GPS processing, a special effort was made to obtain consistent results with highest possible accuracies and reliabilities. Data of 54 mainly European IGS and EUREF sites were included in the GPS processing in order to obtain results which are internally consistent with the European kinematic field and order to allow for a regional interpretation. After an overview of the results of the IGS/EUREF sites, the results from more than 80 stations in Greece are presented in terms of velocities, time series, trajectories and strain rates. Previous geodetic, geological and seismological findings are generally confirmed and substantially refined. New important results include the observation of deformation zones to the north and to the south of the North Aegean Trough and in the West Hellenic arc region, arc-parallel extension of about 19 mm/yr along the Hellenic arc, and compression between the Ionian islands and the Greek mainland. Due to continuous long-term observations of 4–8 years, it was possible to extract height changes from the GPS time series. In Greece, we observe a differential subsidence of the order of 2 mm/yr between the northern and central Ionian islands across the Kefalonia fault zone. The differential subsidence of the central Ionian islands with respect to the northwestern Greek mainland amounts to 4 mm/yr.  相似文献   
32.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
33.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

34.
Granular carbonate deposits of Late Pleistocene to Early Holocene age, commonly referred to as ‘miliolite limestone’, occur in a linear belt, parallel to the southern coast of Saurashtra, India. In the present study area these carbonate deposits are found in select valleys between ridges and mounds of pyroclastic material present in the Deccan trap plateau. Two different depositional histories have been proposed for these sediments. The presence of marine bioclasts led to the postulation of a marine origin for these deposits. The second school of thought propounded redeposition of the coastal sediments by aeolian processes. Although a few features could not be explained by the proposed aeolian model, critical comparison of these two views favoured the aeolian origin. The mode of occurrence, lithological and structural attributes, and microscopic evidence presented here, also support a possible aeolian origin for these deposits. Experimental observation indicates that these carbonate aeolianites represent backflow deposits, which accumulated because of the flow separation caused by the presence of topographic highs. The conspicuous concave‐up geometry of the deposit conformed to the shape of the separation bulb. In view of the inferred depositional mechanism, the disposition of the deposits and the signature of the palaeoflow direction suggest that the carbonate particles were derived from the north‐western coast of Saurashtra by strong south‐easterly winds. Massive granular carbonates with outsized basement clasts appear to be the product of avalanching of granular material from the higher contours because of oversteepening of the primary deposit.  相似文献   
35.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   
36.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
37.
Morphological analysis of the drainage system in the Eastern Alps   总被引:2,自引:1,他引:1  
We study the morphology of the major rivers draining the Eastern Alps to test whether the active tectonics of this part of the orogen is reflected in the shape of channel profiles of the river network. In our approach we compare channel profiles measured from digital elevation models with numerically modelled channel profiles using a stream power approach. It is shown that regions of high stream power coincide largely with regions of highest topography and largest uplift rates, while the forelands and the Pannonian Basin are characterised by a significantly lower stream power. From stream power modelling we conclude that there is young uplift at the very east of the Eastern Alps, in the Bohemian Massif and in the Pohorje Range. The impact of the Pleistocene glaciations is explored by comparing properties of rivers that drain in proximal and distal positions relative to the ice sheet during the last glacial maximum. Our analysis shows that most knick points, wind gaps and other non-equilibrium features of catchments covered by ice during the last glaciations (Salzach, Enns) can be correlated with glacial processes. In contrast the ice free catchments of the Mur and Drava are characterized by channels in morphological equilibrium at the first approximation and are showing only weak evidence of the strong tectonic activity within these catchments. Finally, the channel profiles of the Adige and the divide between the upper Rhine and Danube catchments differ significantly from the other catchments. We relate this to the fact that the Adige and the Rhine respond to different base levels from the remainder of the Eastern Alps: The Adige may preserve a record from the Messininan base level change and the Rhine is subject to the base level lowering in the Rhine Graben.  相似文献   
38.
Borehole data reveals that during Late Quaternary, the Ganga river was non-existent in its present location near Varanasi. Instead, it was flowing further south towards peripheral craton. Himalayan derived grey micaceous sands were being carried by southward flowing rivers beyond the present day water divide of Ganga and mixed with pink arkosic sand brought by northward flowing peninsular rivers. Subsequently, the Ganga shifted to its present position and got incised. Near Varanasi, the Ganga river is flowing along a NW-SE tectonic lineament. The migration of Ganga river is believed to have been in response to basin expansion caused due to Himalayan tectonics during Middle Pleistocene times. Multi-storied sand bodies generated as a result of channel migration provide excellent aquifers confined by a thick zone of muddy sediments near the surface. Good quality potable water is available at various levels below about 70 m depth in sandy aquifers. Craton derived gravelly coarse-to-medium grained sand forms the main aquifer zones of tens of meter thickness with enormous yield. In contrast, the shallow aquifers made up of recycled interfluve silt and sandy silt occur under unconfined conditions and show water-level fluctuation of a few meters during pre-and post-monsoon periods.  相似文献   
39.
The imbalance between incoming and outgoing salt causes salinization of soils and sub-soils that result in increasing the salinity of stream-flows and agriculture land. This salinization is a serious environmental hazard particularly in semi-arid and arid lands. In order to estimate the magnitude of the hazard posed by salinity, it is important to understand and identify the processes that control salt movement from the soil surface through the root zone to the ground water and stream flows. In the present study, Malaprabha sub-basin (up to dam site) has been selected which has two distinct climatic zones, sub-humid (upstream of Khanapur) and semi-arid region (downstream of Khanapur). In the upstream, both surface and ground waters are used for irrigation, whereas in the downstream mostly groundwater is used. Both soils and ground waters are more saline in downstream parts of the study area. In this study we characterized the soil salinity and groundwater quality in both areas. An attempt is also made to model the distribution of potassium concentration in the soil profile in response to varying irrigation conditions using the SWIM (Soil-Water Infiltration and Movement) model. Fair agreement was obtained between predicted and measured results indicating the applicability of the model.  相似文献   
40.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号