首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   11篇
  国内免费   55篇
测绘学   2篇
地球物理   19篇
地质学   105篇
海洋学   3篇
自然地理   2篇
  2022年   5篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1989年   2篇
  1988年   1篇
  1974年   1篇
排序方式: 共有131条查询结果,搜索用时 296 毫秒
91.
小间距隧道爆破动力特性试验研究   总被引:5,自引:2,他引:3  
分岔隧道是一种新型隧道结构形式。以漆树槽分岔隧道为工程背景,进行了掘进爆破的围岩震动效应试验,通过不同掏槽结构下爆破震动作用隧道围岩衬砌质点振动速度的频谱分析与质点振动速度幅值的分布情况分析,对小间距公路隧道混凝土衬砌及其围岩在爆破地震波作用下的力学特征进行论述,重点研究了小间距隧道中隔墙及爆破掌子面的震动特性及变化规律。试验与分析结果表明,(1)中墙迎爆侧为振速峰值区,以水平径向振速最大,且沿着中墙走向呈现规律性变化;(2)掏槽孔爆破产生的地震效应最为强烈,其震动强度是扩槽眼和周边眼的2倍左右;(3)衬砌振速主振频率主要分布在低频段,以20~95 Hz为集中频段,高频地震波衰减极快;(4)同一测试断面中最大振速峰值出现在拱顶和边墙中部位置的概率最大,且大小比较接近,爆破掌子面附近的振速不适合萨道夫斯基预测公式,受爆破夹制及自由面的影响较大。  相似文献   
92.
基于有效的土-结相互作用有限元数值模拟方法,利用有限元软件ABAQUS对水平及竖向地震共同作用下双线盾构隧道的地震响应进行分析研究。地震动输入选取近场地震Loma、ChiChi、Mammoth和WoLong的基岩水平及竖向加速度时程记录。结果表明,不同近场地震记录对隧道结构的作用不同,隧道的地震反应与场地性质及地震动的频谱特性密切相关。对比隧道在水平及竖向地震动共同作用下的响应与单向水平地震动作用下的响应,发现隧道的最大地震附加内力及其分布均发生较大的变化,在隧道结构抗震设计中需引起重视。另外,分析中还考虑了在双向地震动共同作用下,隧道间距、土-结接触面的摩擦系数、土-结相对刚度、输入的地震记录和竖向地震动相对强度对隧道地震响应的影响等,研究结果对隧道工程的抗震设计具有一定的参考价值。  相似文献   
93.
随着中国农业商品化转型的不断发展,传统露天种植模式逐渐被取代,城市郊区大棚面积迅速扩张,出现较为普遍的耕地利用“大棚化”转型。与此相随,耕作者也由传统“自给自足”型农民为主逐步转变为面向市场的“新型职业农民”。然而,到目前为止,少有研究分析新型职业农民在城市郊区耕地利用“大棚化”转型中扮演的角色。论文以南京市为例,基于2018年郊区291份农户问卷调查的一手数据,构建Logistic回归模型,研究微观尺度下新型职业农民对大棚化转型的影响。结果表明:① 新型职业农民是影响郊区耕地利用大棚化转型的根本因素,其中外来职业农民大棚化种植的可能性是其他类型农民的4.7倍左右;② 新型职业农民的务农年数和经营规模对大棚化转型具有显著的正向作用,其年龄对大棚化转型的作用方向相反;③ 对研究区所有农民而言,销售占比和单位面积耕地农业年度纯利润对大棚化转型具有显著正向作用。此外,相较于坡地和梯田,平地更加有利于农民大棚化种植。  相似文献   
94.
This paper generalizes the finite strain Coulomb solution of Vrakas and Anagnostou (Int J Numer Anal Meth Geomech 2014; 38(11): 1131–1148) for the classic tunnel mechanics problem of the ground response curve to elastoplastic grounds satisfying a non‐linear Mohr's failure criterion. A linear (Coulomb‐type) plastic potential function is used, leading to a non‐associated flow law, and edge plastic flow is considered in the plastic zone. The solution for a general non‐linear Mohr's failure criterion is semi‐analytical in that it requires the evaluation of definite integrals. In the special case of the Hoek–Brown criterion, however, these integrals are calculated analytically, resulting in a rigorous closed‐form series solution. The applicability of the derived solution is illustrated through the example of the Yacambú‐Quibor tunnel, where very large deformations were observed when crossing of weak graphitic phyllites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
95.
Most of the railway tunnels in Sweden are shallow-seated (<20 m of rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr–Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.  相似文献   
96.
Visco-Plastic Behaviour around Advancing Tunnels in Squeezing Rock   总被引:3,自引:1,他引:2  
Summary  The visco-plastic behaviour of rocks plays a relevant role in the tunnelling works, especially for deep tunnels subjected to large initial stresses for which squeezing conditions may develop. A rheological model is discussed that accounts for visco-elastic (primary) and visco-plastic (secondary) contributions to rock creep. The effects of tertiary creep are included in the model by way of a gradual mechanical damage governed by the cumulated visco-plastic strains. The parameters of the intact rock are first identified based on laboratory test results presented in the literature. Then, after scaling them to those of the rock mass, the potential applicability of the model is tested through axisymmetric and plane strain finite element analyses of the full face excavation of a deep circular tunnel. The results are discussed with particular reference to the short term redistribution of stresses around the opening and to its convergence. The analyses show the relevant influence of tertiary creep on the tunnel closure. In addition, those based on an axisymmetric scheme turn out to be crucial for the correct long term prediction of the interaction between the rock mass and the supporting structure of the opening.  相似文献   
97.
This paper proposes an approach to estimate groundwater recharge using an optimization‐based water‐table fluctuation method combined with a groundwater balance model in an arid hardrock‐alluvium region, located at the Oman–United Arab Emirates border. We introduce an “effective hardrock thickness” term to identify the percentage of the considered hardrock thickness in which effective groundwater flow takes place. The proposed method is based upon a Thiessen polygon zoning approach. The method includes subpolygons to represent specific geologic units and to enhance the confidence of the estimated groundwater recharge. Two linear and 1 nonlinear submodels were developed to evaluate the model components for the calibration (October 1996 to September 2008) and validation (October 2008 to September 2013) periods. Long‐term annual groundwater recharge from rainfall and return flow over the model domain are estimated as 24.62 and 5.71 Mm3, respectively, while the effective groundwater flow circulation is found to occur in the upper 7% of the known hardrock thickness (42 m), confirming conclusions of previous field studies. Considering a total difference in groundwater levels between eastern and western points of the study area of the order of 220 m and a 12‐year monthly calibration period, a weighted root mean squared error in predicted groundwater elevation of 2.75 m is considered quite reasonable for the study area characterized by remarkable geological and hydrogeological diversity. The proposed approach provides an efficient and robust method to estimate groundwater recharge in regions with a complex geological setting in which interaction between fractured and porous media cannot be easily assessed.  相似文献   
98.
Twin tunnels are frequently used to address the increasing transportation demands in large cities. To ensure the safety of twin tunnels in close proximity, it is often necessary to take protective measures that have not been well studied. Field monitoring was conducted for a project of twin earth pressure balance shield (EPBS) tunnels in typical soft ground. The preceding tunnel was reinforced by various measures, including trailer bracing, compensation grouting, artificial freezing and scaffold bracing. The entire deformation of the reinforced tunnel was recorded during the succeeding tunnelling process. A three dimensional finite-element method (FEM) model was established to simulate the entire process of twin EPBS tunnelling, particularly the reinforcement measures. The computed deformations of the reinforced tunnel were consistent with the measured data. Furthermore, the stress history and pore pressure of the surrounding soil were analysed to investigate the deformation mechanism of the tunnel. Both the measured and computed results indicate that although the face pressure of the succeeding tunnel was smaller than the earth pressure at rest, the preceding tunnel could still experience an inward horizontal convergence and a deflection away from the succeeding tunnel. These distortion modes were caused by the squeezing effect of the horizontal soil arch in front of the succeeding tunnel face. Finally, convergence and deflection indices were proposed to quantify and assess the effectiveness of the reinforcement measures. The trailer bracing, as an “in-tunnel” reinforcement technique, was found to be the most effective method for controlling tunnel convergence. However, artificial freezing as an “out-tunnel” reinforcement technique led to the largest reductions in tunnel deflection. A combination of both “in-tunnel” and “out-tunnel” reinforcements was recommended.  相似文献   
99.
The ground response to tunnel excavation is usually described in terms of the characteristic line of the ground (also called ‘ground response curve’, GRC), which relates the support pressure to the displacement of the tunnel wall. Under heavily squeezing conditions, very large convergences may take place, sometimes exceeding 10–20% of the excavated tunnel radius, whereas most of the existing formulations for the GRC are based on the infinitesimal deformation theory. This paper presents an exact closed‐form analytical solution for the ground response around cylindrical and spherical openings unloaded from isotropic and uniform stress states, incorporating finite deformations and linearly elastic‐perfectly plastic rock behaviour obeying the Mohr–Coulomb failure criterion with a non‐associated flow rule. Additionally, the influence of out‐of‐plane stress in the case of cylindrical cavities under plane‐strain conditions is examined. The solution is presented in the form of dimensionless design charts covering the practically relevant parameter range. Finally, an application example is included with reference to a section of the Gotthard Base tunnel crossing heavily squeezing ground. The expressions derived can be used for preliminary convergence assessments and as valuable benchmarks for finite strain numerical analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
100.
In this study, a simplified analytical closed‐form solution, considering plane strain and axial symmetry conditions, for analysis of a circular pressure tunnel excavated underwater table, is developed. The method accounts for the seepage forces with the steady‐state flow and is based on the generalized effective stress law. To examine the effect of pore pressure variations and also the boundary conditions at the ground surface, the formulations are derived for different directions around the tunnel. The proposed method can be applied for analysis and design of pressure tunnels. Illustrative examples are given to demonstrate the performance of the proposed solution and also to examine the effect of seepage forces on the stability of tunnels. The simplified analytical solution derived in this study is compared with numerical analyses. It is concluded that the classic solutions (Lame's thick‐walled solution), considering the internal pressure as a mechanical load applied to the tunnel surface, are not applicable to pervious media and can result in an unsafe design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号