首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   332篇
  国内免费   271篇
测绘学   2篇
地球物理   128篇
地质学   2086篇
海洋学   198篇
天文学   8篇
综合类   55篇
自然地理   93篇
  2024年   3篇
  2023年   14篇
  2022年   15篇
  2021年   29篇
  2020年   61篇
  2019年   54篇
  2018年   45篇
  2017年   74篇
  2016年   53篇
  2015年   65篇
  2014年   88篇
  2013年   129篇
  2012年   83篇
  2011年   119篇
  2010年   99篇
  2009年   143篇
  2008年   126篇
  2007年   133篇
  2006年   113篇
  2005年   93篇
  2004年   99篇
  2003年   99篇
  2002年   97篇
  2001年   97篇
  2000年   106篇
  1999年   89篇
  1998年   59篇
  1997年   93篇
  1996年   76篇
  1995年   47篇
  1994年   40篇
  1993年   29篇
  1992年   20篇
  1991年   19篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
排序方式: 共有2570条查询结果,搜索用时 15 毫秒
101.
The unexplored area of Azarhare in central Morocco is studied thanks to three sections composed of five lithological facies Main biostratigraphical and sedimentological results concern (1) the identification of Late Visean biozones, with important presence of problematic algae Ungdarella, (2) the regional extension of deposit sequences SD5, SD6 and SD7 previously defined, (3) and an analysis of the diagenetic kaolinite. To cite this article: A. Karim et al., C. R. Geoscience 337 (2005).  相似文献   
102.
103.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
104.
The Carrancas Formation outcrops in east-central Brazil on the southern margin of the São Francisco craton where it comprises the base of the late Neoproterozoic Bambuí Group. It is overlain by the basal Ediacaran cap carbonate Sete Lagoas Formation and was for a long time considered to be glacially influenced and correlative with the glaciogenic Jequitaí Formation. New stratigraphic, isotopic and geochronologic data imply that the Carrancas Formation was instead formed by the shedding of debris from basement highs uplifted during an episode of minor continental rifting. Reddish dolostones in the upper Carrancas Formation have δ13C values ranging from +7.1 to +9.6‰, which is a unique C isotopic composition for the lowermost Bambuí Group but similar to values found in the Tijucuçu sequence, a pre-glacial unit in the Araçuaí fold belt on the eastern margin of the São Francisco craton. The stratigraphic position below basal Ediacaran cap carbonates and the highly positive δ13C values together indicate a Cryogenian interglacial age for the Carrancas Formation, with the high δ13C values representing the so-called Keele peak, which precedes the pre-Marinoan Trezona negative δ13C excursion in other well characterized Cryogenian sequences. Hence, The Carrancas Formation pre-dates de Marinoan Jequitaí Formation and represents an interval of Cryogenian stratigraphy not previously known to occur on the southern margin of São Francicso craton. Documentation of Cryogenian interglacial strata on the São Francisco craton reinforces recent revisions to the age of Bambuí Group strata and has implications for the development of the Bambuí basin.  相似文献   
105.
吉尔吉斯斯坦中天山地质特征及研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
文章通过对近年来有关吉尔吉斯中天山研究进展的梳理,结合在吉尔吉斯斯坦的实地考察,系统论述了中天山基础地质情况,并简述与岩浆活动有关的成矿作用。吉尔吉斯斯坦境内的天山由"尼古拉耶夫线"和阿特巴什—伊内尔切克断裂划分为北、中、南3部分。中天山两侧的缝合带限定了早古生代古吉尔吉斯洋和晚古生代南天山洋的发展和消亡过程。组成中天山的不同块体大多具有古元古界的基底,古生代总体处于大陆坡-边缘海沉积环境。晚古生代产出与俯冲相关的岩浆作用和后碰撞岩浆作用,前者与斑岩型铜矿、接触交代型铜-金矿相关,后者与造山型金矿相关。  相似文献   
106.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   
107.
Mass transport deposits and geological features related to fluid flow such as gas chimneys, mud diapirs and volcanos, pockmarks and gas hydrates are pervasive on the canyon dominated northern slope of the Pearl River Mouth basin of the South China Sea. These deposits and structures are linked to serious geohazards and are considered risk factors for seabed installations. Based on high resolution three dimensional seismic surveys, seismic characteristics, distributions and origins of these features are analyzed. A distribution map is presented and geometrical parameters and spatial distribution patterns are summarized. Results show that various groups of the mapped features are closely tied to local or regional tectonism and sedimentary processes. Mass transport complexes are classified as slides near the shelf break, initially deformed slumps on the flanks of canyons and highly deformed slumps on the lower slope downslope of the mouth of canyons. We propose them to be preconditioned by pore pressure changes related to sea level fluctuations, steep topography, and fluid and fault activities. Gas chimneys are mainly located in the vicinity of gas reservoirs, while bottom-simulating reflectors are observed within the gas chimney regions, suggesting gas chimneys serve as conduits for thermogenic gas. Mud diapirs/volcanos and pockmarks are observed in small numbers and the formation of pockmarks is related to underlying gas chimneys and faults. This study aims at reducing risks for deep-water engineering on the northern slope of South China Sea.  相似文献   
108.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   
109.
This article focuses on field- and laboratory-based characterization of vertically persistent fractures that are part of oblique-slip normal fault zones and crosscut the Cretaceous platform and overlaying ramp carbonates outcropping at Maiella Mountain (central Italy). The achieved results show that: (i) fault damage zones are wider and more densely fractured in the platform carbonates than in the ramp ones; (ii) joints and sheared joints composing the fault damage zones are taller, better connected and less spaced within the former rocks than in the ramp carbonates. The aforementioned structural differences are interpreted to be a consequence of the different mechanical properties of the platform and ramp carbonates during failure. At Maiella Mountain, platform carbonates are, indeed, made up of overall stiffer (higher Uniaxial Compressive Strength values) and less porous rocks, due to more abundant intergranular void-filling cement and presence of matrix.In terms of hydrocarbon flow and recovery, geometric and dimensional attributes of fractures suggest that the well-connected network of closely spaced fractures cutting across the platform carbonates may form efficient pathways for both vertical and horizontal hydrocarbon flow. In contrast, the relatively poorly connected and low-density fracture network affecting the ramp carbonates is likely less efficient in providing fairways for flowing hydrocarbons.  相似文献   
110.
This study applies modern seismic geomorphology techniques to deep-water collapse features in the Orange Basin (Namibian margin, Southwest Africa) in order to provide unprecedented insights into the segmentation and degradation processes of gravity-driven linked systems. The seismic analysis was carried out using a high-quality, depth-migrated 3D volume that images the Upper Cretaceous post-rift succession of the basin, where two buried collapse features with strongly contrasting seismic expression are observed. The lower Megaslide Complex is a typical margin-scale, extensional-contractional gravity-driven linked system that deformed at least 2 km of post-rift section. The complex is laterally segmented into scoop-shaped megaslides up to 20 km wide that extend downdip for distances in excess of 30 km. The megaslides comprise extensional headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems which, in the proximal part of the megaslides, exhibit oblique extensional motion and define horst structures up to 6 km wide between individual megaslides. In the toe areas, reverse slip along these same sidewall faults, creates lateral ramps with hanging wall thrust-related folds up to 2 km wide. Headwall rollover anticlines, sidewall horsts and ramp anticlines may represent novel traps for hydrocarbon exploration on the Namibian margin.The Megaslide Complex is unconformably overlain by few hundreds of metres of highly contorted strata which define an upper Slump Complex. Combined seismic attributes and detailed seismic facies analysis allowed mapping of headscarps, thrust imbrications and longitudinal shear zones within the Slump Complex that indicate a dominantly downslope movement of a number of coalesced collapse systems. Spatial and stratal relationships between these shallow failures and the underlying megaslides suggest that the Slump Complex was likely triggered by the development of topography created by the activation of the main structural elements of the lower Megaslide Complex.This study reveals that gravity-driven linked systems undergo lateral segmentation during their evolution, and that their upper section can become unstable, favouring the initiation of a number of shallow failures that produce widespread degradation of the underlying megaslide structures. Gravity-driven linked systems along other margins are likely to share similar processes of segmentation and degradation, implying that the megaslide-related, hydrocarbon trapping structures discovered in the Namibian margin may be common elsewhere, making megaslides an attractive element of deep-water exploration along other gravitationally unstable margins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号