首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   26篇
  国内免费   36篇
测绘学   12篇
大气科学   62篇
地球物理   38篇
地质学   42篇
海洋学   11篇
天文学   227篇
综合类   3篇
自然地理   4篇
  2022年   2篇
  2021年   3篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   66篇
  2010年   71篇
  2009年   29篇
  2008年   24篇
  2007年   17篇
  2006年   14篇
  2005年   31篇
  2004年   23篇
  2003年   23篇
  2002年   7篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   3篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有399条查询结果,搜索用时 957 毫秒
91.
This is a paper concerned with security, surveillance and notions of atmosphere and ambience. Whilst surveillance and security research has been excellent at examining socio-spatial relations drawn into the production and consumption of surveillance technologies, systems and practices, it has been far less well attuned to the material–affective relations, presences and absences it comes to constitute as the fabric of public space. Research within human geography and a broader ‘new materialism’ within the humanities and social sciences has become increasingly interested in exploring affective atmospheres, yet largely ignorant of a well established school of thought within French urban and social theory of ‘ambiance’. This paper explores the providence of considering atmospheres and ambiances for the examination of surveillance through the case study of two major railway stations in Britain and France. The paper proffers some methods and techniques for the further exploration of atmospheres/ambiances of security.  相似文献   
92.
Molecular oxygen produced by the decomposition of icy surfaces is ubiquitous in Saturn's magnetosphere. A model is described for the toroidal O2 atmosphere indicated by the detection of and O+ over the main rings. The O2 ring atmosphere is produced primarily by UV photon-induced decomposition of ice on the sunlit side of the ring. Because O2 has a long lifetime and interacts frequently with the ring particles, equivalent columns of O2 exist above and below the ring plane with the scale height determined by the local ring temperature. Energetic particles also decompose ice, but estimates of their contribution over the main rings appear to be very low. In steady state, the O2 column density over the rings also depends on the relative efficiency of hydrogen to oxygen loss from the ring/atmosphere system with oxygen being recycled on the grain surfaces. Unlike the neutral density, the ion densities can differ on the sunlit and shaded sides due to differences in the ionization rate, the quenching of ions by the interaction with the ring particles, and the northward shift of the magnetic equator relative to the ring plane. Although O+ is produced with a significant excess energy, is not. Therefore, should mirror well below those altitudes at which ions were detected. However, scattering by ion-molecule collisions results in much larger mirror altitudes, in ion temperatures that go through a minimum over the B-ring, and in the redistribution of both molecular hydrogen and oxygen throughout the magnetosphere. The proposed model is used to describe the measured oxygen ion densities in Saturn's toroidal ring atmosphere and its hydrogen content. The oxygen ion densities over the B-ring appear to require either significant levels of UV light scattering or ion transmission through the ring plane.  相似文献   
93.
David R. Klassen 《Icarus》2009,204(1):32-47
Principal components analysis and target transformation are applied to near-infrared image cubes of Mars in a study to disentangle the spectra into a small number of spectral endmembers and characterize the spectral information. The image cubes are ground-based telescopic data from the NASA Infrared Telescope Facility during the 1995 and 1999 near-aphelion oppositions when ice clouds were plentiful [ [Clancy et al., 1996] and [56]], and the 2003 near-perihelion opposition when ice clouds are generally limited to topographically high regions (volcano cap clouds) but airborne dust is more common [Martin, L.J., Zurek, R.W., 1993. J. Geophys. Res. 98 (E2), 3221-3246]. The heart of the technique is to transform the data into a vector space along the dimensions of greatest spectral variance and then choose endmembers based on these new “trait” dimensions. This is done through a target transformation technique, comparing linear combinations of the principal components to a mineral spectral library. In general Mars can be modeled, on the whole, with only three spectral endmembers which account for almost 99% of the data variance. This is similar to results in the thermal infrared with Mars Global Surveyor Thermal Emission Spectrometer data [Bandfield, J.L., Hamilton, V.E., Christensen, P.R., 2000. Science 287, 1626-1630]. The globally recovered surface endmembers can be used as inputs to radiative transfer modeling in order to measure ice abundance in martian clouds [Klassen, D.R., Bell III, J.F., 2002. Bull. Am. Astron. Soc. 34, 865] and a preliminary test of this technique is also presented.  相似文献   
94.
We present evidence for condensed-phase methane precipitation near Xanadu using nine nights of observations from the SINFONI integral-field spectrograph at the Very Large Telescope and imaging analysis with empirical surface subtraction. Radiative transfer models are used to support the imaging technique by simulating the spectrometer datacubes and testing for variations in both the surface reflectivity spectrum and atmospheric opacity. We use the models and observations together to argue against artifacts that may arise in the image analysis. High phase angle observations from Cassini/VIMS are used to test against surface scattering artifacts that may be confused with sources of atmospheric opacity. Although changes in the surface reflectivity spectrum can reproduce observations from a particular viewing geometry on a given night, multiple observations are best modeled by condensed-phase methane opacity near the surface. These observations and modeling indicate that the condensed-phase methane opacity observed with this technique occurs predominantly near Xanadu and is most likely due to precipitation.  相似文献   
95.
《Experimental Astronomy》2009,23(3):947-976
Kronos is a mission aimed to measure in situ the chemical and isotopic compositions of the Saturnian atmosphere with two probes and also by remote sensing, in order to understand the origin, formation, and evolution of giant planets in general, including extrasolar planets. The abundances of noble gases, hydrogen, carbon, nitrogen, oxygen, sulfur and their compounds, as well as of the D/H, 4He/3He, 22Ne/21Ne/20Ne, 36Ar/38Ar, 13C/12C, 15N/14N, 18O/(17O)/16O, 136Xe/134Xe/132Xe/130Xe/129Xe isotopic ratios will be measured by mass spectrometry on two probes entering the atmosphere of Saturn at two different locations near mid-latitudes, down to a pressure of 10 Bar. The global composition of Saturn will be investigated through these measurements, together with microwave radiometry determination of H2O and NH3 and their 3D variations. The dynamics of Saturn’s atmosphere will be investigated from: (1) measurements of pressure, temperature, vertical distribution of clouds and wind speed along the probes’ descent trajectories, and (2) determination of deep winds, differential rotation and convection with combined probe, gravity and radiometric measurements. Besides these primary goals, Kronos will also measure the intensities and characteristics of Saturn’s magnetic field inside the D ring as well as Saturn’s gravitational field, in order to constrain the abundance of heavy elements in Saturn’s interior and in its central core. Depending on the preferred architecture (flyby versus orbiter), Kronos will be in a position to measure the properties of Saturn’s innermost magnetosphere and to investigate the ring structure in order to understand how these tiny structures could have formed and survived up to the present times. An erratum to this article can be found at  相似文献   
96.
This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.  相似文献   
97.
Fog and stratus formation on the coast of Brazil   总被引:1,自引:0,他引:1  
  相似文献   
98.
99.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   
100.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号