首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   49篇
  国内免费   177篇
测绘学   1篇
地球物理   15篇
地质学   407篇
海洋学   18篇
天文学   1篇
自然地理   13篇
  2024年   2篇
  2023年   8篇
  2022年   15篇
  2021年   13篇
  2020年   26篇
  2019年   32篇
  2018年   20篇
  2017年   28篇
  2016年   31篇
  2015年   25篇
  2014年   44篇
  2013年   41篇
  2012年   25篇
  2011年   17篇
  2010年   9篇
  2009年   26篇
  2008年   16篇
  2007年   16篇
  2006年   17篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有455条查询结果,搜索用时 281 毫秒
111.
东北陆块群是中亚造山带的主要构造单元,关于其前寒武纪古老基底属性的判别、古生代构造单元划分及增生造山演化过程一直是地质学家研究热点。兴安增生地体被认为是东北陆块群的重要组成部分,由于其前寒武纪沉积-岩浆记录的大量缺失,使得奥陶纪沉积-岩浆事件成为研究其构造演化的关键。本文对出露于兴安增生地体奥陶系的多宝山组进行了碎屑锆石LA-ICP-MS U-Pb定年、锆石Hf同位素及地球化学分析,旨在准确限定多宝山组的沉积时限,揭示其沉积环境及物源区性质。研究结果表明,来自大扬气镇南、花朵山南部及伊尔施西北部三个地区的多宝山组变质砂岩的最年轻锆石年龄分别为481±5Ma (D9088)、462±5Ma (296NJ-1) and 473±11Ma (HDG06),类似于其对应加权平均年龄482±3Ma (n=12)、475±6Ma (n=10)和483±8Ma (n=7),由此限定多宝山组的沉积下限为早-中奥陶世。其中1.0Ga样品数量最多的锆石年龄为462~520Ma,峰值年龄为516Ma、497Ma和482Ma;次者在790~980Ma,该年龄区间出现969Ma、830Ma、788Ma、760Ma等峰值; 1.0Ga的具有较弱的峰值(1321~2410Ma),主要为1882Ma和2410Ma两个峰值,以上所有峰值与额尔古纳地块内部同期岩浆岩体完全吻合,说明所研究样品的物源区主要来自额尔古纳地块。对比分析不同区域多宝山组碎屑锆石Hf同位素特征,发现自东向西越靠近额尔古纳地块,多宝山组碎屑锆石ε_(Hf)(t)值越小,二阶段模式年龄t_(DM2)越老,暗示物源区基底古老物质逐渐增多。结合奥陶系砂岩的地球化学特征,我们推测这种变化趋势可能反映了由活动大陆边缘向额尔古纳地块内部过渡的构造环境。  相似文献   
112.
The Lagonegro Units are a part of the southern Apennines orogenic wedge. The age of the Lagonegro successions ranges from lower–middle Triassic to Oligo-Miocene. During late Cretaceous and Oligocene the deposition of calcareous-clastic sediments occurred interbedded with shales (Flysch Rosso Fm). During Oligocene and early Miocene, in the Mediterranean area, an important variation of the tectonic regime occurred, and siliciclastic sediments of the Numidian Basin unconformably lay on the Meso-Cenozoic units of the Lagonegro Basin. In the Lucanian Apennine, the Aquitanian–Langhian Numidian Flysch Fm overlies the Flysch rosso Fm. The shales of the Flysch rosso Fm have a peculiar geochemical fingerprint relative to typical shales of post-Archean age. The abundance of Ni and Cr is significantly higher and the HREE chondrite-normalized patterns are steep with a (Gd/Yb)ch>2. A supply of material from the African Archean terranes could be the cause. The palaeo-weathering indices record changes at the source, reflecting variations in the tectonic regime. The oldest samples are derived from an environment in which steady-state weathering conditions prevailed, whereas the youngest samples are related to non-steady-state weathering conditions. This difference could record deformational events that affected the Mediterranean area during the Oligocene and early Miocene. The sample at the top of the studied log has very high silica content and an abundant coarse grain-sized fraction. This suggests that this sample belongs to the Numidian Flysch Fm. The geochemical proxies of this sample are different from those associated with samples from the Flysch rosso Fm, indicating that the source-area of the Numidian Flysch Fm did not include the Archean terranes.  相似文献   
113.
Mineral chemistry, 40Ar/39Ar geochronology on white micas and Apatite Fission Track Thermochronology (AFTT), are applied here to study the provenance of the synorogenic Molare Formation (lowermost unit of the Tertiary Piedmont Basin clastic sequence). The Molare Formation was deposited during transgression onto the Ligurian Alps nappe stack in the Early Oligocene. Depositional facies show that clastic distribution remained transversal, with local sources located just landward from the coastline. Phengite mineral chemistry together with 40Ar/39Ar data clearly shows two distinctive source areas, each one mirroring the composition of the basement directly beneath the clastic sequence. Amphibole mineral chemistry allows second order provenance distinctions within each sector, reflecting heterogeneous metamorphic evolution of the bedrock complexes. Integrated 40Ar/39Ar dating and AFTT suggest that, following a fast cooling/exhumation episode of the Ligurian Alps during the Oligocene, very little net uplift has since occurred. This is due to a period of general subsidence from the Oligocene–Late Miocene followed by comparable uplift from Late Miocene–Pliocene to the present. In general our data provide an image of the Ligurian Alps during the Oligocene, which is very similar to the present-day one.This revised version was published online in September 2003.  相似文献   
114.
应用WRDickinson等人对砂岩与物源分析结果,对我国华北地台第一沉积盖层的宣龙内陆海长城系的常州沟组和串岭组的砂岩和石英岩状砂岩进行投点,结果表明,形成砂岩和石英岩状砂岩的主要物源,是内陆海南北两侧的大陆块蚀源区的克拉通源区。通过阴极发光分析,进一步揭示了克拉通古陆火成岩的物源略多于变质岩。重矿物鉴定结果,确定了火成岩主要为花岗岩和花岗闪长岩;变质岩为合石榴石斜长片麻岩和角闪片麻岩等。克拉通岩石经过长期风化,碎屑经过远距离搬运和充分地离解和分解之后,在宣龙内陆海沉积了常州沟、串岭沟组的砂岩和石英岩状砂岩。  相似文献   
115.
If reconstruction of major events in ancient orogenic belts is achieved in sufficient detail, the tectonic evolution of these belts can offer valuable information to widen our perspective of processes currently at work in modern orogens. Here, we illustrate this possibility taking the western European Cadomian–Avalonian belt as an example. This research is based mainly on the study and interpretation of U–Pb ages of more than 300 detrital zircons from Neoproterozoic and Early Paleozoic sedimentary rocks from Iberia and Brittany. Analyses have been performed using the laser ablation–ICP–MS technique. The U–Pb data record contrasting detrital zircon age spectra for various terranes of western Europe. The differences provide information on the processes involved in the genesis of the western European Precambrian terranes along the northern margin of Neoproterozoic Gondwana during arc construction and subduction, and their dispersal and re-amalgamation along the margin to form the Avalonia and Armorica microcontinents. The U–Pb ages reported here also support the alleged change from subduction to transform activity that led to the final break-up of the margin, the birth of the Rheic Ocean and the drift of Avalonia. We contend that the active northern margin of Gondwana evolved through several stages that match the different types of active margins recognised in modern settings.  相似文献   
116.
东准噶尔喀姆斯特下泥盆统阿拉比也巴斯他乌组和下石炭统卡姆斯特组代表陆壳增生不同阶段的沉积响应.碎屑岩碎屑组成模式和地球化学分析结果表明阿拉比也巴斯他乌组形成于大洋-活动大陆过渡型构造环境,物源区主要为发育在过渡型地壳之上的岩浆岛弧;卡姆斯特组形成于活动大陆型构造环境,物源区主要为大陆岛弧环境的切割岩浆弧.沉积相、相组合及生物生态等沉积特征显示两组的沉积环境分别为海底斜坡和海底扇中扇-外扇盆地平原.结合区域构造分析和地层对比研究,下泥盆统阿拉比也巴斯他乌组海底斜坡沉积是东准噶尔构造带早泥盆世弧后盆地沉积响应的主要记录,卡姆斯特组海底扇-海底平原沉积则主要记录了东准噶尔复合地体早石炭世晚期弧间残余海盆的沉积响应.两套沉积响应记录的环境演化受控于中亚型造山带复杂的造山作用.  相似文献   
117.
李任伟 《岩石学报》1999,15(4):623-629
在大别山北麓、合肥盆地南缘侏罗系三尖铺组和凤凰台组地层中含有大理岩砾石, 属山麓冲积扇环境沉积。它们的δ13 C数值范围为- 1.7‰~1.3‰, 大多数近于零值, 它们的δ18O数值从6.5‰~23.0‰。大别地块佛子岭群大理岩的δ13C数值为- 2.0‰~- 2.5‰, δ18O数值范围从6.3‰~13.1‰。大别地块高压和超高压变质岩带的大理岩的δ13 C数值为1‰~6‰,δ18O数值为5‰~23‰。碳同位素组成的明显差别表明现今大别地块佛子岭群和高压、超高压变质岩不是合肥盆地南缘侏罗系大理岩砾石的来源区。由于δ13C的数值不随δ18O值的降低而变化, 且分布在一个狭窄的范围, 合肥盆地南缘侏罗系大理岩砾石的碳同位素组成代表了它的原岩在沉积时海水的同位素记录。  相似文献   
118.
Silicic volcanic rocks generally constitute a minor, but key product to track the magmatic evolution in mafic rock dominated large igneous provinces (LIPs). However, for their generally late-stage nature of the silicic volcanic rocks they have a poor preservation potential due to extensive post-eruption erosion. We track the eroded volcanic rocks from the ∼260 Ma Emeishan LIP by analyzing the provenance of the LIP-derived sedimentary rocks. Sandstones from a cored succession of the Late Permian Longtan Formation in the northern Youjiang Basin are rich in volcanic rock fragments, and associated mudstones have low Al2O3/TiO2 ratios. Detrital zircon grains from the Longtan Formation display typical unimodal U–Pb age spectra with a prominent peak at ca. 260 Ma. These detrital zircons show an overall geochemical affinity akin to those crystallized from within-plate/anorogenic magmas. Such petrological and geochemical characteristics are consistent with a dominant source from the Emeishan volcanic rocks. Through the sampled succession, zircon grains of ∼260 Ma from the lower Longtan Formation generally display lower U/Yb (most < 0.5) and Th/Nb (most < 10) ratios and higher εHf(t) values (mostly in the range of +3 to +8) than those from the upper part. A similar sequential variation has also been observed in the Shaiwa Formation, which is an offshore time-equivalent unit to the Longtan Formation. These consistent temporal variations through the sedimentary successions in the Youjiang Basin are interpreted to reflect erosional unroofing of the Emeishan LIP during the Late Permian. These results, integrated with previous studies on the rhyolites and trachytes in Emeishan LIP, reveal a fractional crystallization dominated petrogenetic process with diminishing crustal assimilation for the late-stage silicic volcanism.  相似文献   
119.
The early to mid-Paleozoic subduction-induced terrane accretion along the northern margin of the North China Craton is not well understood. To address this issue, we investigate the magmatic and sedimentary records, including both new and previously published geochemical, Sr–Nd isotopic, and zircon U–Pb–Hf isotopic data from the Bainaimiao Arc. The collected gabbro–diorites and granitoids have been dated to 431–453 Ma. The gabbro–diorites have high Mg/(Mg + Fe) molar ratios (44.41–73.39); depleted Nb, Ta and Ti; and negative εNd(t) values (-9.43–-6.80). They were derived from a mantle wedge metasomatized by subduction-derived fluids with crustal contamination. The granitoids are characterized by high silica, low to high K, low Fe and Mg contents, strong fractionation of rare earth elements, and positive εHf(t) values (+1.42–+8.19). They were derived from crustal melts with juvenile additions. The clastic rocks from the Baoerhantu Group and Xibiehe Formation are dominated by early Paleozoic zircons, whereas those from the Bainaimiao Group are dominated by early Paleozoic and Precambrian zircons. Detrital zircon geochronology and field geology confirm their deposition in early to mid-Paleozoic. The U–Pb ages and petrographic and geochemical analyses indicate that the clastic rocks were deposited in arc-related basins with felsic sources from the Bainaimiao Arc. The xenocrystic and detrital zircons in the magmatic and clastic rocks, respectively, imply a Precambrian basement for the Bainaimiao Arc. The early Paleozoic magmatic rocks of the Bainaimiao Arc show secular changes with decreasing age: increasing K2O contents and Sr/Y ratios and decreasing Fe2O3T + MgO contents and εHf(t) and εNd(t) values. This is likely in response to advancing subduction and related crustal thickening. Accordingly, the following tectono-paleogeographic model was proposed for the Bainaimiao Arc: (a) ∼500–455 Ma initial subduction and juvenile arc development, (b) ∼455–415 Ma continuous subduction with mature arc development, and (c) ∼415–400 Ma accretion to the North China Craton.  相似文献   
120.
The eastern segment of Central Asian Orogenic Belt underwent not only a long evolution history related to the Paleo-Asian Ocean during Paleozoic but also the tectonic overprinting by the westward subduction of Paleo-Pacific Ocean crust during Mesozoic. When the subduction of Paleo-Pacific Ocean crust started has been long debated issue for understanding the tectonic evolution of the eastern Asian continental margin. The eastern margin of the Jimusi Block (Wandashan Terrane) preserved complete records for the accretionary process of the westward subduction of Paleo-Pacific Ocean crust. Comprising the Yuejinshan Complex and Raohe Accretionary Complex (RAC), the Wandashan Terrane is located in the eastern margin of Jiamusi Block, NE China, and is considered to be an accretionary wedge of the westward subducting oceanic crust. To reconstruct the marginal accretion processes of the Jiamusi Block, the structural deformation of the Wandashan Terrane was investigated in the field and the geochronology of the Dalingqiao and Yongfuqiao formations were studied, which were formed syn-and-post RAC accretion respectively. The Yuejinshan and Raohe complexes were discontinuously accreted to the eastern margin of the Jiamusi Block. Contrary to the previous consideration of the Late Triassic to Early Jurassic, this study suggests that the Yuejianshan Complex in southwest Wandashan Terrane probably accreted from Late Carboniferous to Middle Permian, which was driven by unknown oceanic crust subduction existing to the east (present position) of the Jiamusi Block at that time. The siltstones of the Dalingqiao Fm. yield the youngest zircon U-Pb age of 142 ± 2 Ma, indicating the emplacement of the RAC not earlier than the Late Jurassic. Thus, the RAC might start to accrete from the Jurassic and emplace during 142–131 Ma, resulted from the Paleo-Pacific subduction which started from the Late Triassic to Early Jurassic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号