首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   27篇
  国内免费   57篇
测绘学   7篇
大气科学   126篇
地球物理   42篇
地质学   34篇
海洋学   38篇
天文学   1篇
综合类   5篇
自然地理   11篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   6篇
  2014年   11篇
  2013年   18篇
  2012年   7篇
  2011年   11篇
  2010年   17篇
  2009年   13篇
  2008年   17篇
  2007年   21篇
  2006年   18篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   7篇
  1996年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有264条查询结果,搜索用时 125 毫秒
41.
Field biological and geomorphological observations in certain East Asia coasts permit definition of Mean Sea Level (MSL) with an accuracy of ~10 cm, that is, a vertical geodetic datum, as well as recognition of the MSL of fossil shorelines, up to a few thousand years old, mainly associated with tectonic/seismic effects. Subsidence produced by compaction of nearly-surficial strata seems also to be a usual effect. These data indicate that datum variability is a widespread effect in East Asia, time-dependent even at time scales affecting engineering works, but only in a few cases fully predictable.  相似文献   
42.
极端干旱区在全球生态系统中具有重要的地位而越来越被人们所重视。涡度相关技术是研究极端干旱区生态系统水热和CO2交换的有力工具之一。而涡度相关数据在实际应用中需要根据研究区的实际情况选择适宜于该地区的采样和计算参数(如采样频率和平均时间等)。根据2011年9月22日~10月8日(17个白天)原始数据(采样频率为10 Hz),采用不同平均时间(1~120 min)对塔河下游柽柳河岸林生态系统的潜热通量[(LE)]、感热通量[(H)]和CO2通量[(Fc)]进行了重新计算,比较分析各通量不同平均时间的计算值与30 min通量值,以揭示平均时间对该地区通量计算结果的影响。结果发现:(1)平均时间在120 min以内,17个白天湍流通量及能量平衡比率[(EBR)]均值随平均时间的延长而增大,当平均时间>120 min后,湍流通量(及[EBR])均值随平均时间的延长大幅减小,其中15~60 min的[EBR]增幅较小,仅在2%左右。(2)平均时间>60 min后,[LE]、[H]和[FC]各通量计算值发生了不同程度的变异。通过进一步对上午[EBR]较为接近的5个样本日进行对比分析,发现当平均时间取15~60 min之间时,样本日的上午[EBR]值变化趋势一致,样本日间[EBR]差异较小;而当平均时间取>60 min或<15 min时,样本日间[EBR]差异明显增大。结合Ogive函数计算分析,我们的结论是,对于通量的长期观测研究而言,该地区适宜平均时间为60 min;而对通量的日变化研究而言,该地区适宜平均时间为15 min。通过分析15、30和60 min平均时间对小时通量的影响,发现当通量为增加趋势时,平均时间延长能够进一步增大通量绝对值,而当通量为减小趋势时,平均时间延长能够进一步减小通量绝对值。  相似文献   
43.
44.
郝小翠  张强  杨泽粟  黄菁 《冰川冻土》2017,39(5):1057-1064
目前通用的通量观测技术涡动相关仪(EC)在区域陆面模式验证中存在能量不闭合和空间代表性有限的问题,寻求改进EC观测热通量的新技术是提高陆面模式验证效果的关键环节,大孔径闪烁仪(LAS)的出现有效改善了这一现状。基于黄土高原定西站2010年1月和6月的同步综合观测资料以及目前比较有代表性的陆面过程模式CLM的模拟数据,分析研究了LAS对EC观测地表能量不平衡问题的改进以及LAS对EC在区域陆面模式验证中的提高,结果表明:LAS可有效解决EC观测存在的地表能量不平衡问题,提高EC的地表能量闭合度,在非均匀下垫面LAS观测优势突出;利用LAS观测的感热通量进行区域陆面模式的验证,能够很大程度地避免EC能量不闭合和空间尺度不匹配在验证中造成的偏差,LAS观测更适合于大尺度模拟的验证,验证效果更好。  相似文献   
45.
基于镭同位素分布的黄海和东海垂直混合速率计算   总被引:4,自引:0,他引:4       下载免费PDF全文
在黄海和东海采样测定了水体中的镭同位素分布,用平流扩散模型描述镭同位素分布,最小二乘方法计算了垂直涡动扩散系数和上升流或下降流流速.结果给出北黄海中部、南黄海中部、浙江沿岸和台湾北部海域存在上升流,流速分别为0.46×10-3cm·s-1、0.17×10-3~1.39×10-3cm·s-1、2.02×10-3~3.04×10-3 cm·s-1和1.06×10-3~2.51×10-3 cm·s-1.北黄海中部和东海东北部存在下降流.流速分别为-2.30×10-3 cm·s-1和-0.61×10-3~-2.10×10-3 cm·s-1.计算同时给出的垂直涡动扩散系数为5.84~48.2 cm2·s-1,平均值为22.3 cm2·s-1.北黄海和浙江沿岸上升流流速与文献的结果一致;北黄海中部存在下降流与文献的结论一致.本研究结果与文献结果一致是对所建立的方法的肯定,也是对文献研究结果的支持.  相似文献   
46.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   
47.
A subgrid-scale parameterization scheme motivated by statistical closure theory, but employing statistics obtained from high-resolution direct numerical simulations, is applied to large eddy simulations of two-level quasigeostrophic turbulence on the sphere. It is shown that these parameterizations are consistent with the phenomenology of quasigeostrophic turbulence. The parameterizations consist of 2 × 2 dissipation and stochastic forcing covariance matrices at each wavenumber, with the off-diagonal elements of the matrices representing vertical mixing. Two flow regimes, characterized by their deformation scales, are considered, namely atmospheric and oceanic. In the former, the deformation scale is fully resolved, and the truncation scale is within the enstrophy cascading interial range. In the latter, the deformation scale is not fully resolved, and the truncation scale is within the energy cascading inertial range. It is demonstrated through numerical experiments that both stochastic and deterministic variants of the scheme give comparable results for the energy spectra in the atmospheric regime. In the oceanic regime, the stochastic variant again gives excellent results, but the deterministic variant is found to be numerically unstable.  相似文献   
48.
Geometric features in oceanic mesoscale eddies such as tilt and anisotropy can influence the properties of the Reynolds stress that provides feedback between the eddies and the background flow. By regarding an eddy as a wave, previous studies have parameterized the Reynolds stress based on the equivalence in the tilt angle between the phase of the eddy stream functions and the variance ellipse for the Reynolds stress (RS-ellipse). However, the wave assumption cannot predict the anisotropy of the RS-ellipse, and also largely simplifies the eddy geometry, which would naturally be an ellipsoid rather than a wave. The present study explores the shape relation between elliptical eddies and the RS-ellipse, by mathematically reformulating the Reynolds stress based on the eddy shape. The new formula reveals that the shape relation is regulated by the horizontal extent of the occurrence probability distribution (PDF) of the eddy, and that the shape of the eddy and RS-ellipse are identical at the place of maximum PDF when the horizontal scale of the PDF is sufficiently larger than the size of the eddy. A similar tendency is found in eddies detected by satellite altimetry in the Kuroshio Extension jet region. A detailed analysis of the PDF in this region shows that the tilts of the eddies are likely to be consistent with the destabilization effect on the jet, suggesting a strong relation between the eddy geometry and the jet's stability in this region. These findings may open a path toward a new method to parameterize the Reynolds stress with the background state, exploiting the shape equivalence between the eddies and the RS-ellipse.  相似文献   
49.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   
50.
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia’s population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia’s west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC’s eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a “tilt” towards the coast, and that during a rotation the flow of particles may rise up to the euphotic zone and then down beneath. In a warm-core eddy, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments.There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号