首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   24篇
测绘学   1篇
地球物理   2篇
地质学   78篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   9篇
  2016年   4篇
  2015年   6篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   9篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2000年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   4篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
51.
A deep epithermal vein system hosted in Late Proterozoic to Cambrian granodiorite has been identified in the Sierra Norte de Córdoba, the easternmost range of the Sierras Pampeanas Orientales of Argentina. The vein swarm extends over an area of 3 km2 parallel to a mylonitic belt and formed in fractured granodiorite. Thicknesses of veins are less than 0.5 m and their visible strike length is less than 100 m. Veins are either barren or weakly mineralized in base-metal sulfides. Most veins have mineral associations dominated by calcite and quartz with lesser amounts of chlorite, sericite, pyrite, and minor illite. In other less exposed albite-rich, adularia-bearing veins, chalcopyrite, bornite, galena, sphalerite, chalcocite and covellite may occur. The widespread occurrence of bladed calcite without any petrographic or microthermometric evidence of boiling implies that this particular habit of calcite may also develop under sub-near boiling fluid conditions. Thermometric calculations based on fluid inclusion data, chlorite composition and oxygen isotopes in the quartz–calcite pair, constrain the formation of the system between 300 and 350 °C, at pressures between 42 and 64 MPa (1.5–2.3 km). Stable isotope data suggest that W/R interaction might have been the most probable mechanism of alteration, involving the participation of meteoric fluids; nevertheless, the metallic signature of some weakly mineralized veins as well as intermediate fluid inclusion salinities favor a magmatic input and a mixed origin for the fluids. Textures and mineral associations, as well as the absence of evidence of boiling in fluid inclusions, all suggest that the silica–carbonate vein system formed deeper than typically shallow Au and Ag-bearing boiling solutions. A 485 (±25) Ma lamprophyre dike crosscuts some of these veins locally producing metasomatic reactions and skarn formation, which constrains the age of the hydrothermal system to the Cambrian-Early Ordovician time span.  相似文献   
52.
尕尔勤斑岩铜矿床是多龙超大型铜金矿集区内具有较大找矿潜力的矿床之一。本文以尕尔勤斑岩铜矿区内成矿花岗闪长斑岩及新发现的硅帽为研究对象,进行了矿床年代学、地球化学及找矿方向研究工作。尕尔勤矿床花岗闪长斑岩SiO_2含量在60.01%~62.81%之间,K_2O含量在1.86%~2.16%之间,Al_2O_3含量在15.12%~16.51%之间,属于钙碱性岩石系列。斑岩体锆石U-Pb年龄为124.4±0.4Ma(MSWD=0.42,n=25),属于早白垩世侵位;锆石εHf(t)值主要集中于1.15~9.71之间,tDMc模式年龄主要集中于559~1105Ma之间,表明岩浆岩区起源于具有幔源特征的深成熔体,而个别负εHf(t)值(-18.65,-19.75)的出现表明其受到了古老成熟地壳的轻微混染。斑岩体稀土元素显示为重稀土亏损的右倾分布型式,在原始地幔标准化图解中微量元素显示为Rb、Th、U、Sr等大离子亲石元素相对富集,而Nb、Ta、Ti、P、Zr等高场强元素相对亏损特征,体现出岛弧岩浆特有的地球化学特征,综合研究表明矿床形成与班公湖-怒江洋北向俯冲密切相关。硅帽中角砾状样品与层纹状(致密块状)样品地球化学特征具有明显区别,发育较少的层纹状硅帽样品可能为热水沉积与生物化学沉积共同作用形成的硅质岩,而大量存在的角砾状硅帽体现出明显热液充填交代成因特点,经地球化学剖面测量显示硅帽展布区域Cu、Au、Ag、Pb、Zn、As、Sb等成矿指示元素异常明显,结合高光谱矿物识别表明该区域存在浅成低温热液型矿床的巨大可能性,具有重要的勘查指示意义。  相似文献   
53.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   
54.
Cenozoic continental arc magmatism and associated mineralization in Ecuador   总被引:4,自引:0,他引:4  
Most of the economic ore deposits of Ecuador are porphyry-Cu and epithermal style gold deposits associated with Tertiary continental arc magmatism. This study presents major and trace element geochemistry, as well as radiogenic isotope (Pb, Sr) signatures, of continental arc magmatic rocks of Ecuador of Eocene to Late Miocene (~50–9 Ma, ELM) and Late Miocene to Recent (~8–0 Ma, LMR) ages. The most primitive ELM and LMR rocks analyzed consistently display similar trace element and isotopic signatures suggesting a common origin, most likely an enriched MORB-type mantle. In contrast, major and trace element geochemistry, as well as radiogenic isotope systematics of the whole sets of ELM and LMR samples, indicate strikingly different evolutions between ELM and LMR rocks. The ELM rocks have consistently low Sr/Y, increasing Rb/Sr, and decreasing Eu/Gd with SiO2, suggesting an evolution through plagioclase-dominated fractional crystallization at shallow crustal levels (<20 km). The LMR rocks display features of adakite-type magmas (high Sr/Y, low Yb, low Rb/Sr) and increasing Eu/Gd and Gd/Lu ratios with SiO2. We explain the adakite-type geochemistry of LMR rocks, rather than by slab melting, by a model in which mantle-derived melts partially melt and assimilate residual garnet-bearing mafic lithologies at deeper levels than those of plagioclase stability (i.e., >20 km), and most likely at sub-crustal levels (>40–50 km). The change in geochemical signatures of Tertiary magmatic rocks of Ecuador from the ELM- to the LMR-type coincides chronologically with the transition from a transpressional to a compressional regime that occurred at ~9 Ma and has been attributed by other investigations to the onset of subduction of the aseismic Carnegie ridge.The major districts of porphyry-Cu and epithermal deposits of Ecuador (which have a small size, <<200 Mt, when compared to their Central Andean counterparts) are spatially and temporally associated with ELM magmatic rocks. No significant porphyry-Cu and epithermal deposits (except the epithermal high-sulfidation mineralization of Quimsacocha) appear to be associated with Late Miocene-Recent (LMR, ~8–0 Ma) magmatic rocks. The apparent infertility of LMR magmas seems to be at odds with the association of major porphyry-Cu/epithermal deposits of the Central Andes with magmatic rocks having adakite-type geochemical signatures similar to LMR rocks. The paucity of porphyry-Cu/epithermal deposits associated with LMR rocks might be only apparent and bound to exposure level, or real and bound (among other possibilities) to the lack of development of shallow crustal magmatic chambers since ~9 Ma as a result of a prolonged compressional regime in the Ecuadorian crust. More work is needed to understand the actual metallogenic potential of LMR rocks in Ecuador.Editorial handling: J. Richards  相似文献   
55.
At Colquijirca, central Peru, a predominantly dacitic Miocene diatreme-dome complex of 12.4 to 12.7 Ma (40Ar/39Ar biotite ages), is spatially related to two distinct mineralization types. Disseminated Au–(Ag) associated with advanced argillic alteration and local vuggy silica typical of high- sulfidation epithermal ores are hosted exclusively within the volcanic center at Marcapunta. A second economically more important mineralization type is characterized as "Cordilleran base metal lode and replacement deposits." These ores are hosted in Mesozoic and Cenozoic carbonate rocks surrounding the diatreme-dome complex and are zoned outward from pyrite–enargite–quartz–alunite to pyrite–chalcopyrite–dickite–kaolinite to pyrite–sphalerite–galena–kaolinite–siderite. Alunite samples related to the Au–(Ag) epithermal ores have been dated by the 40Ar/39Ar method at 11.3–11.6 Ma and those from the Cordilleran base metal ores in the northern part of the district (Smelter and Colquijirca) at 10.6–10.8 Ma. The significant time gap (~0.5 My) between the ages of the two mineralization types in the Colquijirca district indicates they were formed by different hydrothermal events within the same magmatic cycle. The estimated time interval between the younger mineralization event (base metal mineralization) at ~10.6 Ma and the ages of ~12.5 Ma obtained on biotites from unmineralized dacitic domes flanking the vicinity of the diatreme vent, suggest a minimum duration of the magmatic–hydrothermal cycle of around 2 Ma. This study on the Colquijirca district offers for the first time precise absolute ages indicating that the Cordilleran base metal lode and replacement deposits were formed by a late hydrothermal event in an intrusive-related district, in this case post Au–(Ag) high-sulfidation epithermal mineralization.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial handling: O. Christensen  相似文献   
56.
Fluid-phase relationships and thermodynamic reaction modelling based on published mineral solubility data are used to re-assess the Cu–Au-mineralising fluid processes related to calc-alkaline magmatism. Fluid inclusion microanalyses of porphyry ore samples have shown that vapour-like fluids of low to intermediate salinity and density (~2–10 wt% NaCl eq.; ~0.1–0.3 g cm–3) can carry percentage-level concentrations of copper and several ppm gold at high temperature and pressure. In epithermal deposits, aqueous fluids of similar low to intermediate salinity but liquid-like density are ubiquitous and commonly show a magmatic isotope signature. This paper explores the physical evolution of low-salinity to medium-salinity magmatic fluids of variable density, en route from their magmatic source through the porphyry regime to the near-surface epithermal environment, and investigates the chemical conditions required for effective transport of gold and other components from the magmatic to the epithermal domain. Multicomponent reaction modelling guided by observations of alteration zonation and vein overprinting relationships predicts that epithermal gold deposits are formed most efficiently by a specific succession of processes during the evolution of a gradually cooling magmatic–hydrothermal system. (1) The low-salinity to medium-salinity fluid, after separating from the magma and possibly condensing out some hypersaline liquid in the high-temperature porphyry environment, must physically separate from the denser and more viscous liquid, and then cool within the single-phase fluid stability field. By cooling under adequate confining pressure, such a vapour will evolve above the critical curve and contract, without any heterogeneous phase change, to an aqueous liquid of the same salinity. (2) High concentrations of gold, transported as stable Au bisulphide complexes supporting >1 ppm Au even at 200°C, can be maintained throughout cooling, provided that the fluid initially carries an excess of H2S over Cu+Fe on a molal scale. This condition is favoured by an initially high sulphide content in a particularly low-salinity magmatic fluid, or by preferential partitioning of sulphur into a low-salinity vapour and partial removal of Fe into a hypersaline liquid at high temperature. (3) Acid neutralisation further optimises gold transport by maximising the concentration of the HS ligand. This may occur by feldspar destructive alteration along pyrite±chalcopyrite±sulphate veins, in the transition zone between the porphyry and epithermal environments. An alternative acid/base control is the dissolution of calcite in sediments, which may enable long-distance gold transport to Carlin-type deposits, because of the positive feedback between acid neutralisation and permeability generation. The three physical and chemical transport requirements for high-grade epithermal gold mineralisation are suggested to be the common link of epithermal gold deposits to underlying magmatic–hydrothermal systems, including porphyry-Cu–Au deposits. Both mineralisation types are the result of gradual retraction of isotherms around cooling hydrous plutons in similar tectonic and hydrologic environments. As magmatic fluid is generated at increasing depths below the surface the importance of vapour contraction increases, leading to the typical overprinting of potassic, phyllic and advanced argillic alteration and their related ore styles.Editorial handling: B. Lehmann  相似文献   
57.
The AuPbZn low-sulfidation epithermal ore deposits of Troita, Trestia, and Magura (Apuseni Mountains, Romania) are spatially related to the Bolcana Cu-porphyry. In an attempt to demonstrate the connection between these mineralizations, a geometric study was made based on structural measurements and GOCAD© geomodeller 3D representation of deposits. This study indicates that a specific spatial distribution of the different Au and PbZn veins of the epithermal deposits occurs around the Cu-porphyry, which cannot result from telescoped systems. To cite this article: O. Cardon et al., C. R. Geoscience 337 (2005).  相似文献   
58.
The Pueblo Viejo deposit (production to 1996: 166 t Au, 760 t Ag) is located in the Dominican Republic on the Caribbean island of Hispaniola and ranks as one of the largest high-sulfidation/acid-sulfate epithermal deposits (reserves in 2007: 635 t Au, 3,648 t Ag). One of the advanced argillic ore bodies is cut by an inter-mineral andesite porphyry dike, which is altered to a retrograde chlorite–illite assemblage but overprinted by late-stage quartz–pyrite–sphalerite veins and associated low-grade Au, Ag, Zn, Cd, Hg, In, As, Se, and Te mineralization. The precise TIMS U–Pb age (109.6 ± 0.6 Ma) of the youngest zircon population in this dike confirms that the deposit is part of the Early Cretaceous Los Ranchos intra-oceanic island arc. Intrusion-related gold–sulfide mineralization took place during late andesite–dacite volcanism within a thick pile (>200 m) of carbonaceous sand- and siltstones deposited in a restricted marine basin. The high-level deposit was shielded from erosion after burial under a late Albian (109–100 Ma) ophiolite complex (8 km thick), which was in turn covered by the volcano-sedimentary successions (>4 km) of a Late Cretaceous–Early Tertiary calc-akaline magmatic arc. Estimates of stratigraphic thickness and published alunite, illite, and feldspar K-Ar ages and closure temperatures (alunite 270 ± 20°C, illite 260 ± 30°C, K-feldspar 150°C) indicate a burial depth of about 12 km at 80 Ma. During peak burial metamorphism (300°C and 300 MPa), the alteration assemblage kaolinite + quartz in the deposit dehydrated to pyrophyllite. Temperature–time relations imply that the Los Ranchos terrane then cooled at a rate of 3–4°C/Ma during slow uplift and erosion.  相似文献   
59.
新疆西天山吐拉苏地区发育的与中酸性火山-次火山岩有关的浅成低温热液-斑岩型金多金属成矿系统,是在晚古生代北天山洋向南部伊犁-中天山板块之下俯冲消减的活动大陆边缘背景下形成的。赋矿的大哈拉军山组火山岩及相关的次火山岩形成于晚泥盆世-早石炭世,岩石总体显示钾质-高钾质、准铝质-过铝质的钙碱性-高钾钙碱性特征,其轻稀土富集、Eu负异常显著、大离子亲石元素富集和高场强元素亏损等,均显示出俯冲带岛弧岩浆作用的特点。阿希(低硫型)和京希-伊尔曼得(高硫型)浅成低温热液金矿床以及塔北、吐拉苏铅锌矿床,受大哈拉军山组火山岩中的断裂破碎带以及具高孔隙度和渗透率的岩性控制;塔吾尔别克斑岩型金矿化主要受斑岩体及火山岩中的断裂和裂隙系统控制,并很可能存在浅成低温热液型金矿化的套合或叠加。硫、铅、碳、氧同位素特征显示,成矿物质主要来自岩浆所分泌的热液和/或赋矿的火山-次火山岩。根据成矿系统形成后的保存和变化情况,认为在吐拉苏盆地内剥蚀程度较低的地区,浅成低温热液型金铅锌矿床具备良好的保存条件,同时在其深部还应注意寻找斑岩型或矽卡岩型铜金矿床。  相似文献   
60.
塔吾尔别克金矿床是新疆西天山吐拉苏盆地浅成低温热液金矿集区中的重要金矿床之一,赋存于晚古生代的大哈拉军山组火山岩和花岗斑岩中。矿体多呈脉状-透镜状不连续产出,受近NS向和NNW向断裂及其交汇部位控制。本文对赋矿安山岩进行了LA-ICP-MS锆石U-Pb定年,获得其加权平均年龄为367.1±3.2Ma,表明其喷发时代为晚泥盆世,代表了晚古生代北天山洋向哈萨克斯坦-伊犁板块俯冲消减背景下的岩浆产物。含金石英的氢、氧同位素组成表明,塔吾尔别克金矿床的成矿流体主要来源于大气降水;矿石中热液黄铁矿的δ34S值介于0.6‰~4.7‰之间,铅同位素组成与赋矿岩浆岩相似,指示成矿物质具有壳幔混合特征且以幔源为主,并很可能来自幔源的大哈拉军山组火山岩及其同时同源的花岗斑岩。另外,本文测得穿插矿体和赋矿安山岩的闪长细晶岩脉的锆石LA-ICP-MS U-Pb年龄为315.2±3.5Ma,从而将塔吾尔别克金矿床的成矿时代限定在367~315Ma之间,推测矿床形成于晚泥盆世-早石炭世北天山洋向哈萨克斯坦-伊犁板块俯冲消减的陆缘弧环境中。综合矿床地质特征、稳定同位素组成和成矿时代,认为塔吾尔别克金矿床具有浅成低温热液型向斑岩型矿床过渡的性质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号