首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   58篇
  国内免费   149篇
地球物理   52篇
地质学   593篇
海洋学   12篇
综合类   8篇
自然地理   5篇
  2024年   1篇
  2023年   5篇
  2022年   8篇
  2021年   7篇
  2020年   10篇
  2019年   15篇
  2018年   16篇
  2017年   13篇
  2016年   8篇
  2015年   8篇
  2014年   15篇
  2013年   26篇
  2012年   15篇
  2011年   18篇
  2010年   22篇
  2009年   21篇
  2008年   17篇
  2007年   44篇
  2006年   35篇
  2005年   28篇
  2004年   37篇
  2003年   42篇
  2002年   26篇
  2001年   37篇
  2000年   31篇
  1999年   28篇
  1998年   27篇
  1997年   26篇
  1996年   14篇
  1995年   22篇
  1994年   13篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有670条查询结果,搜索用时 31 毫秒
71.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   
72.
通过对山东高压超高压变质带的考察,初步认为:榴辉岩的最后隆升时代为燕山期;含硬玉石英岩+榴辉岩+(透辉石)大理岩组合说明表壳岩经历了高压超高压变质作用;该带晋宁期长英质片麻岩花岗岩广泛出露;在其北部麻粒岩和榴辉岩密切伴生。  相似文献   
73.
榴辉岩中绿辉石的测定方法研究   总被引:3,自引:0,他引:3  
黄宝贵  曹文涛 《岩矿测试》1998,17(4):249-253
通过对某地榴辉岩中伴生的有用矿物的纯矿物物质组成的研究,发现Na可作为其中绿辉石的特征性成分,且Na2O含量与其纯度呈正相关。因此,推荐用测定Na2O量并以求得的换算系数计算榴辉岩中绿辉石含量的化学物相分析方法。经合成样品验证,方法的相对误差<1.7%,用于生产样品分析,所得结果的重现性好,平均偏差<0.5%。  相似文献   
74.
75.
Eclogite, a high-pressure–temperature metamorphic rock characterized by garnet + omphacite, is usually considered to be a product of regional metamorphism under a low geothermal gradient. However, in the Sebadani area of the Sambagawa metamorphic belt most petrologists agree that the eclogite formed by localized contact metamorphism due to intrusion of a body in the solid-state (the Sebadani mass). This process is termed ‘high-pressure contact metamorphism'. However, geological considerations suggest that the effect of such a process would be limited, firstly because the speed of emplacement for solid-state material will generally be much lower than that for magma and secondly because in the solid-state there is no heat of fusion in the body available for thermal effects. Thermal modelling of a solid-state intrusion, based on the heat conduction equation, allows the relationship between size of intrusion, velocity of emplacement and thermal effects to be calculated. Two cases have been considered: (1) a hot model, where none of the heat conducted into the surroundings is lost during the rise of the body; and (2) a cold model where all the heat conducted into the surroundings is lost. These models bracket possible thermal histories of the body. Calculations suggest that in the Sebadani region, production of the observed metamorphic features requires unrealistically high velocity and a much larger intruded body than is observed. These conclusions suggest that it is unlikely that eclogite in the Sebadani area was formed by high-pressure contact metamorphism, but rather that it represents the highest-grade part of the regional Sambagawa metamorphism.  相似文献   
76.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   
77.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   
78.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   
79.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   
80.
苏北超高压变质带是秦岭—大别造山带的东延部分,所产出的榴辉岩有三种类型,分别为产于片麻岩中的G类榴辉岩、产于大理岩中的M类榴辉岩和产于蛇纹岩中P类榴辉岩。地球化学研究表明,三类榴辉岩的原岩复杂多样,源岩为下地壳或上地幔的基性-超基性岩,兼具大陆和大洋玄武岩的特征,富含TiO2等有用组分,是金红石矿床的成矿母岩。金红石矿床的形成是华北、扬子两大板块俯冲碰撞的结果,金红石成矿作用的强弱与岩性、构造、变质变形作用等密切相关。榴辉岩中含有金红石、钛铁矿、磷灰石、石榴子石、绿辉石等多种有用矿物,具有较高的综合利用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号