首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   171篇
  国内免费   747篇
测绘学   2篇
大气科学   9篇
地球物理   203篇
地质学   1656篇
海洋学   121篇
天文学   8篇
综合类   18篇
自然地理   14篇
  2024年   2篇
  2023年   20篇
  2022年   28篇
  2021年   27篇
  2020年   49篇
  2019年   69篇
  2018年   50篇
  2017年   103篇
  2016年   94篇
  2015年   98篇
  2014年   119篇
  2013年   78篇
  2012年   91篇
  2011年   102篇
  2010年   68篇
  2009年   116篇
  2008年   93篇
  2007年   125篇
  2006年   119篇
  2005年   68篇
  2004年   77篇
  2003年   61篇
  2002年   48篇
  2001年   48篇
  2000年   63篇
  1999年   29篇
  1998年   34篇
  1997年   17篇
  1996年   20篇
  1995年   22篇
  1994年   20篇
  1993年   12篇
  1992年   12篇
  1991年   16篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1954年   3篇
排序方式: 共有2031条查询结果,搜索用时 218 毫秒
71.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   
72.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   
73.
Chemical analyses suggest that the metavolcanic rocks of the Almas Greenstone Belt (AGB), Tocantins State, Brazil have a continental affinity, possibly related to a continental rift environment. They were metamorphosed to amphibolite facies during a regional tectono-metamorphic event (Dn), retrogressed to greenschist facies assemblages and then hydrothermally altered within dextral strike–slip shear zones (Dn+1). Fracture sets related to Dn+2 intersect Sn+1.The Paiol Gold Mine is one of several mineralised zones within metabasic and meta-intermediate rocks of the AGB. It exploits shoots of sulphide–Au–quartz mineralisation that occupy dilational zones approximately perpendicular to an elongation lineation (Ln+1) within mylonitic foliation Sn+1 (Sn+1=S within the S–C fabric). The dilational zones probably formed due to dextral displacement on sinistrally en echelon C surfaces. Minor amounts of gold may have been introduced or remobilised during Dn+2.Coexisting primary and pseudosecondary fluid inclusions in mineralised quartz veins from ore shoots comprise a high-salinity three-phase type (Type II) and a lower salinity two-phase type (Type I). Homogenisation temperatures for Type II inclusions range from 200 to 410 °C and Type I from 90 to 320 °C. The inclusions and their temperature ranges are believed to reflect heat exchange and some mixing between the two fluid types under relatively constant ambient temperatures, but variable (though broadly declining) fluid temperatures. This took place late in Dn+1 in conjunction with greenschist facies retrogression and localised hydrothermally induced metasomatism.  相似文献   
74.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   
75.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   

76.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   

77.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   
78.
The Kuoerzhenkuola gold field (including the Kuo- erzhenkuola and the Buerkesidai gold deposits), lo- cated 68 km east of Jimunai County in northern Xing- jiang, China, is an important component of the Sawuer gold belt which is the eastward extending part of the Zarma-Sawur gold-copper belt in Kazakhstan. Some studies are concerned with the geology of the gold ores[1―3], the associated volcanic rocks[4], radiogenic isotope[5―8], and the ore-forming environment[8]. Most researchers inferr…  相似文献   
79.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   
80.
高温高压下矿物的拉曼原位测量表明,某些拉曼活性的物质其拉曼位移与压力之间具有良好的线性关系。这一特性使我们能够通过测量矿物包裹体中含有这些子矿物的拉曼位移以确定矿物的形成压力。与目前常采用的共存矿物对压力计以及流体包裹体的CO2等容线法等压力测定方法相比,该方法具有快速、方便和准确的特点。由于包裹体中可以存在各种不同的子矿物以及不同的溶液物质,因此系统研究包裹体中一切可能存在的矿物或物质的拉曼位移与温度和压力之间的关系将可以提供一种方便、准确的地质压力测量手段。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号