首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5068篇
  免费   1165篇
  国内免费   1292篇
测绘学   130篇
大气科学   425篇
地球物理   1629篇
地质学   3823篇
海洋学   581篇
天文学   81篇
综合类   294篇
自然地理   562篇
  2024年   33篇
  2023年   96篇
  2022年   225篇
  2021年   219篇
  2020年   206篇
  2019年   246篇
  2018年   225篇
  2017年   244篇
  2016年   243篇
  2015年   258篇
  2014年   344篇
  2013年   292篇
  2012年   365篇
  2011年   398篇
  2010年   277篇
  2009年   334篇
  2008年   339篇
  2007年   361篇
  2006年   352篇
  2005年   266篇
  2004年   278篇
  2003年   228篇
  2002年   189篇
  2001年   148篇
  2000年   169篇
  1999年   126篇
  1998年   161篇
  1997年   170篇
  1996年   140篇
  1995年   116篇
  1994年   96篇
  1993年   72篇
  1992年   82篇
  1991年   43篇
  1990年   49篇
  1989年   46篇
  1988年   35篇
  1987年   9篇
  1986年   19篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1954年   5篇
排序方式: 共有7525条查询结果,搜索用时 46 毫秒
991.
The Early Cretaceous deposits are composed of important source rocks in Boli Basin. The types of the source rocks include black mudstones and coal (with carbonaceous mudstone). By the organic geochemical analysis methods, the authors discussed the organic petrological characters, abundance of organic matter, degree of maturity and the type of source rocks. The main micro-component of black mudstone is exinite or vitrinite, and the content of vitrinite is high in coal. The weathering of the outcrop is very serious. The abundance of organic matter in source rock reaches the poor to better rank. The major kerogens in mudstone are type-Ⅲ, type-Ⅱ2 and some type-Ⅱ1; the organic type of coal is type-Ⅲ. The thermal evolution of the source rocks in every structural unit is very different, from low-maturity to over-maturity. The depositional environment is reductive, which is good for the preservation of organic matter. The organic matter in source rocks is mainly from aquatic organisms and terrigenous input.  相似文献   
992.
李庆旭  张彪  王爽  谢高地 《地学前缘》2018,25(5):298-304
植被覆盖状况是监测与表征区域生态建设成效的重要指标。以往研究注重区域植被覆盖状况的整体变化分析,对长时期区域内部植被覆盖变化及其差异研究较少。文中基于京津风沙源区遥感影像数据,采用GIS空间分析技术,重点评估了2000—2015年植被覆盖度的年际变化及其区域差异。研究结果表明,2000—2015年京津风沙源区植被覆盖度变化为35%~45%,且随年份变化呈波动增加趋势,年均增速为0.4%(P<0.05),生态治理取得明显植被恢复成效。8个治理分区植被覆盖均有所增加,但区域差异明显,晋北山地丘陵亚区和燕山丘陵山地水源保护亚区植被覆盖度年均增速超过0.6%,浑善达克沙地亚区与荒漠草原亚区植被覆盖度年均增速不及0.2%,这与区域地表组成和气候背景有关。从地市来看,北京、天津和承德植被覆盖度较高,但朔州和张家口植被覆盖度增速明显,而乌兰察布和包头植被覆盖度年均增速低于0.1%。相比2000年,2015年京津风沙源区有51%的区域植被覆盖度增加,49%区域植被覆盖度未变或降低,主要集中在京津风沙源区的中部和西部县市(旗),未来生态治理过程中应加以重点关注。  相似文献   
993.
华南地区5月降水的水汽特征分析   总被引:1,自引:0,他引:1  
利用国家气候中心的降水资料及NCEP/NCAR再分析资料、NOAA海温资料分析了华南地区5月降水的主要水汽通道及变异机制。发现异常多雨年的水汽主要来自南海、孟加拉湾和青藏高原南侧;异常少雨年则因西太平洋副热带高压(简称副高)偏东,来自南海的水汽缺失,只有来自孟加拉湾和高原南侧的两股水汽,因而南海的水汽是影响华南地区5月降水的重要因素。分析发现当北太平洋的准东西向海温异常是"负正负"分布时,南海地区为异常的反气旋性环流,有利于副高西伸加强;北太平洋海温距平为"正负正"异常分布时,南海地区为异常的气旋性环流,副高东退减弱。此外,北方南下冷空气的阻挡使得季风北界位置偏南,冷空气和季风在华南地区交汇导致5月降水异常增多。  相似文献   
994.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   
995.
Muri Basin in the Qilian Mountain is the only permafrost area in China where gas hydrate samples have been obtained through scientific drilling. Fracture-filling hydrate is the main type of gas hydrate found in the Qilian Mountain permafrost. Most of gas hydrate samples had been found in a thin-layer-like, flake and block group in a fracture of Jurassic mudstone and oil shale, although some pore-filling hydrate was found in porous sandstone. The mechanism for gas hydrate formation in the Qilian Mountain permafrost is as follows: gas generation from source rock was controlled by tectonic subsidence and uplift--gas migration and accumulation was controlled by fault and tight formation--gas hydrate formation and accumulation was controlled by permafrost. Some control factors for gas hydrate formation in the Qilian Mountain permafrost were analyzed and validated through numerical analysis and laboratory experiments. CSMGem was used to estimate the gas hydrate stability zone in the Qilian permafrost at a depth of 100–400 m. This method was used to analyze the gas composition of gas hydrate to determine the gas composition before gas hydrate formation. When the overlying formation of gas accumulation zone had a permeability of 0.05 × 10−15 m2 and water saturation of more than 0.8, gas from deep source rocks was sealed up to form the gas accumulation zone. Fracture-filling hydrate was formed in the overlap area of gas hydrate stability zone and gas accumulation zone. The experimental results showed that the lithology of reservoir played a key role in controlling the occurrence and distribution of gas hydrate in the Qilian Mountain permafrost.  相似文献   
996.
Analysis was carried out of part of the northern North Sea to test what the presence and style of gas chimneys indicate about fluid pressure (Pf) within hydrocarbon reservoirs. Previous results suggest that broad chimneys above a trap and thin chimneys on the flanks indicate the presence of hydrocarbons, whilst thin chimneys in the crest suggest the hydrocarbons have escaped. Each type of gas chimney is usually associated with overpressure within Mesozoic reservoirs, but the water leg is hydrostatically-pressured in most Cenozoic reservoirs. This indicates: (a) gas leaking from a trap does not necessarily cause Pf to become hydrostatic; (b) overpressure may not be necessary for the expulsion of gasses through seal units to create the chimneys; (c) although gas chimneys indicate the existence of an active hydrocarbon system, their presence does not appear to indicate anything significant about present-day Pf.  相似文献   
997.
本文以太平洋CC区西区12个表层沉积物样品作为研究对象,对其粒度、化学组分和矿物成分进行分析,讨论其沉积环境和物质来源。研究区地处深海,主要以深海黏土和硅钙质黏土为主,含有少量的硅质黏土、黏土质硅质软泥和黏土质钙质软泥。黏土矿物成分主要是蒙皂石和伊利石,含有部分的高岭石和绿泥石。黏土矿物组成表明,区内沉积物主要是陆源,由高空气流携带而来,南极底流和热液活动对其物源的来源有一定影响。沉积物地球化学特征也表明,物源以陆源为主,稀土元素分布曲线和北太平洋表层海水稀土曲线类似,且表现出强的Ce亏损,表明生物活动导致的生物沉降对表层沉积物也有一定的影响。  相似文献   
998.
采用碳氮稳定性同位素技术分析了东海渔山列岛浅海岩礁区生物的碳氮稳定性同位素比值,研究了浅海岩礁区14种初级生产者、61种消费者的营养级。结果表明,东海渔山列岛浅海岩礁区消费者的营养级(TL)变化范围为2.000—4.760,推断东海渔山列岛浅海岩礁区生物有4个营养级;初级生产者δ~(15)N值变化范围为2.75‰—6.85‰,消费者δ~(15)N值变化范围为4.57‰—13.39‰;通过对不同生物δ~(15)N值的比较发现,各类别生物间的δ~(15)N值差异高度显著(P0.01),短滨螺(Littorina brevicula)的δ~(15)N值最低(4.57‰),中国花鲈(Lateolabrax maculatum)和黑鲷(Acanthopagrus schlegelii)的δ~(15)N值最大,分别为11.87‰和13.39‰;单因素方差分析(One-Way ANOVA)表明4类食源间δ~(15)N和δ~(13)C值差异高度显著(P0.01);食源分析表明,鱼类的贡献范围(0.00%—7.09%)最小,初级生产者的贡献范围(27.05%—57.99%)最大;比较发现不同海域同一种生物体内富集的15N量也存在差异,这也从一个侧面反映出不同海域间生物的群落结构和稳定性存在差异。  相似文献   
999.
The Late Miocene Zeit Formation is exposed in the Red Sea Basin of Sudan and represents an important oil-source rock. In this study, five (5) exploratory wells along Red Sea Basin of Sudan are used to model the petroleum generation and expulsion history of the Zeit Formation. Burial/thermal models illustrate that the Red Sea is an extensional rift basin and initially developed during the Late Eocene to Oligocene. Heat flow models show that the present-day heat flow values in the area are between 60 and 109 mW/m2. The variation in values of the heat flow can be linked to the raise in the geothermal gradient from margins of the basin towards offshore basin. The offshore basin is an axial area with thick burial depth, which is the principal heat flow source.The paleo-heat flow values of the basin are approximately from 95 to 260 mW/m2, increased from Oligocene to Early Pliocene and then decreased exponentially prior to Late Pliocene. This high paleo-heat flow had a considerable effect on the source rock maturation and cooking of the organic matter. The maturity history models indicate that the Zeit Formation source rock passed the late oil-window and converted the oil generated to gas during the Late Miocene.The basin models also indicate that the petroleum was expelled from the Zeit source rock during the Late Miocene (>7 Ma) and it continues to present-day, with transformation ratio of more than 50%. Therefore, the Zeit Formation acts as an effective source rock where significant amounts of petroleum are expected to be generated in the Red Sea Basin.  相似文献   
1000.
In 2013, the first discovery of gas pools in well LS 208 in intrusive rocks of the Songliao Basin (SB), NE China was made in the 2nd member of the Yingcheng Formation in the Yingtai rift depression, proving that intrusive rocks of the SB have the potential for gas exploration. However, the mechanisms behind the origin of reservoirs in intrusive rocks need to be identified for effective gas exploration. The gas pool in intrusive rocks can be characterized as a low-abundance, high-temperature, normal-pressure, methane-rich, and lithologic pool based on integrated coring, logging, seismic, and oil test methods. The intrusive rocks show primary and secondary porosities, such as shrinkage fractures (SF), spongy pores (SP), secondary sieve pores (SSP), and tectonic fractures (TF). The reservoir is of the fracture–pore type with low porosity and permeability. A capillary pressure curve for mercury intrusion indicates small pore-throat size, negative skewness, medium–high displacement pressure, and middle–low mercury saturation. The development of fractures was found to be related to the quenching effects of emplacement and tectonic inversion during the middle–late Campanian. SP and SSP formed during two phases. The first phase occurred during emplacement of the intrusive rock in the late Albian, when the intrusions underwent alteration by organic acids. The second phase occurred between the early Cenomanian and middle Campanian, when the intrusions underwent alteration by carbonic acid. The SF formed prior to oil charging, the SSP + SP formed during oil charging, and the TF formed during the middle–late Campanian and promoted the distribution of gas pools throughout the reservoir. The intrusive rocks in the SB and the adjacent basins were emplaced in the mudstone and coal units, and have great potential for gas exploration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号