首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1254篇
  免费   139篇
  国内免费   370篇
地球物理   100篇
地质学   1583篇
海洋学   11篇
天文学   3篇
综合类   42篇
自然地理   24篇
  2024年   4篇
  2023年   11篇
  2022年   21篇
  2021年   21篇
  2020年   28篇
  2019年   42篇
  2018年   39篇
  2017年   31篇
  2016年   37篇
  2015年   40篇
  2014年   34篇
  2013年   89篇
  2012年   64篇
  2011年   50篇
  2010年   38篇
  2009年   71篇
  2008年   54篇
  2007年   86篇
  2006年   84篇
  2005年   65篇
  2004年   70篇
  2003年   65篇
  2002年   56篇
  2001年   59篇
  2000年   57篇
  1999年   67篇
  1998年   53篇
  1997年   50篇
  1996年   56篇
  1995年   62篇
  1994年   54篇
  1993年   55篇
  1992年   33篇
  1991年   20篇
  1990年   20篇
  1989年   26篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
排序方式: 共有1763条查询结果,搜索用时 46 毫秒
881.
Contact metamorphism caused by the Glenmore plug in Ardnamurchan, a magma conduit active for 1 month, resulted in partial melting, with melt now preserved as glass. The pristine nature of much of the aureole provides a natural laboratory in which to investigate the distribution of melt. A simple thermal model, based on the first appearance of melt on quartz–feldspar grain boundaries, the first appearance of quartz paramorphs after tridymite and a plausible magma intrusion temperature, provides a time‐scale for melting. The onset of melting on quartz–feldspar grain boundaries was initially rapid, with an almost constant further increase in melt rim thickness at an average rate of 0.5–1.0 × 10?9 cm s?1. This rate was most probably controlled by the distribution of limited amounts of H2O on the grain boundaries and in the melt rims. The melt in the inner parts of the aureole formed an interconnected grain‐boundary scale network, and there is evidence for only limited melt movement and segregation. Layer‐parallel segregations and cross‐cutting veins occur within 0.6 m of the contact, where the melt volume exceeded 40%. The coincidence of the first appearance of these signs of the segregation of melt in parts of the aureole that attained the temperature at which melting in the Qtz–Ab–Or system could occur, suggests that internally generated overpressure consequent to fluid‐absent melting was instrumental in the onset of melt movement.  相似文献   
882.
Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen‐scale viscous heat production of 0.1 to >1 μW m?3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 °C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time‐span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation‐generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions.  相似文献   
883.
Hydration reactions are direct evidence of fluid–rock interaction during regional metamorphism. In this study, hydration reactions to produce retrograde actinolite in mafic schists are investigated to evaluate the controlling factors on the reaction progress. Mafic schists in the Sanbagawa belt contain amphibole coexisting with epidote, chlorite, plagioclase and quartz. Amphibole typically shows two types of compositional zoning from core to rim: barroisite → hornblende → actinolite in the high‐grade zone, and winchite → actinolite in the low‐grade zone. Both types indicate that amphibole grew during the exhumation stage of the metamorphic belt. Microstructures of amphibole zoning and mass‐balance relations suggest that: (1) the actinolite‐forming reactions proceeded at the expense of the preexisting amphibole; and (2) the breakdown reaction of hornblende consumed more H2O fluid than that of winchite, when one mole of preexisting amphibole was reacted. Reaction progress is indicated by the volume fraction of actinolite to total amphibole, Yact, with the following details: (1) reaction proceeded homogeneously in each mafic layer; (2) the extent of the hornblende breakdown reaction is commonly low (Yact < 0.5), but it increases drastically in the high‐grade part of the garnet zone (Yact > 0.7); and (3) the extent of the winchite breakdown reaction is commonly high (Yact > 0.7). Many microcracks are observed within hornblende, and the extent of hornblende breakdown reaction is correlated with the size reduction of the hornblende core. Brittle fracturing of hornblende may have enhanced retrograde reaction progress by increasing of influx of H2O and the surface area of hornblende. In contrast to high‐grade rocks, the winchite breakdown reaction is well advanced in the low‐grade rocks, where reaction progress is not associated with brittle fracturing of winchite. The high extent of the reaction in the low‐grade rocks may be due to small size of winchite before the reaction.  相似文献   
884.
Serpentinite mylonites from the Happo ultramafic complex show evidence of two stages of mylonitization at different temperature conditions. Peridotite mylonites exhibit two types of olivine – porphyroclasts and neoblasts – produced at the earlier stage. The olivine neoblasts have a stretching lineation with a fabric suggesting plastic deformation along (0 1 0) [0 0 1]. In addition to the olivine fabric, the stable association of olivine, orthopyroxene and tremolite in the peridotites that survived later serpentinization, and the Si and Na contents of tremolite, suggest that the earlier mylonitization took place at temperatures between 700 and 800 °C. Later mylonitization was associated with high‐temperature serpentinization to form serpentinite mylonites. In contrast to a common type of serpentinite in orogenic belts, the serpentinite mylonites are cohesively foliated, rich in olivine and diopside, and poor in antigorite. The diopside has low Al, Cr and Na contents typical of a retrograde origin, and the olivine has a homogeneous composition except in areas subjected to contact metamorphism at a later stage. Modal composition and mineral chemistry suggest that the serpentinite mylonites were formed by a hydration reaction of tremolite and olivine to produce diopside and antigorite under stable conditions of olivine, at temperatures between 400 and 600 °C. Later‐stage mylonitization has preferentially been superimposed on the earlier‐stage mylonite zone with a common direction of foliation. The difference in temperature between the two mylonitization stages suggests that the shear zone was episodically active during the emplacement of the Happo complex. Conditions of relatively high temperature for serpentinization at a convergent plate boundary and high permeability caused by the early mylonitization favoured the formation of the serpentinite mylonites.  相似文献   
885.
攀枝花-西昌(攀西)麻粒岩一直被认为是扬子陆块西缘变质程度最高和最古老的结晶基底岩石。最近从麻粒岩中获得的单颗粒锆石U-Pb测年结果表明,攀西麻粒岩的原岩可能形成于古元古代晚期(1870±24 Ma)。17件锆石U-Pb的谐和年龄(858-778 Ma)可能是麻粒岩受新元古代地幔柱活动影响,在快速冷却和抬升过程中发生角闪岩相退变质作用的时代。这一时间正是全球Rodinia超大陆由汇聚转变为裂解地球动力学系统发生改变的重要时期。  相似文献   
886.
Natural “monalbite” (MA) has been observed on a submicron-scale in jadeite along with high albite (HA) and low albite (LA) in jadeite quartzite in the Dabie ultrahigh-pressure (UHP) metamorphic terrane, China. Transmission electron microscope (TEM) observation of inclusions in jadeite crystals has revealed mineral phases with C2/m and C1? structures. The cell parameters of the C2/m crystal structure correspond to those of MA, whereas the cell parameters of C1? structure are identical to those of HA and LA. The existence of the C2/m structure shows that the jadeite underwent partial change to MA on a submicron-scale during retrograde metamorphism. Albite transformation twinning of HA suggests the transformation of MA into HA. MA occurrence provides powerful evidence of high-temperature metamorphism during exhumation, probably above 930 °C. The preservation of MA may be due to the armouring by the jadeite and implies a very rapid cooling (quenching) during retrogression.  相似文献   
887.
华北古陆块北缘退变榴辉岩的矿物化学与退变质作用   总被引:1,自引:0,他引:1  
华北古陆块北缘退变榴辉岩呈透镜状产于角闪岩相变质的早元古宙红旗营子群黑云斜长片麻岩中,岩相学研究显示它经历了峰期榴辉岩相、减压过程中的高压麻粒岩相和角闪岩相变质作用。峰期榴辉岩相的矿物组合为石榴子石、绿辉石、金红石和石英等,变质条件为680~730℃和大于1.40~1.50GPa。在退变质早期,绿辉石分解形成钠质透辉石和斜长石(An=20.4~30.7)的蠕虫状后生合晶,榴辉岩转变成高压麻粒岩;晚期的退变质作用表现为高压麻粒岩相矿物组合转变成由钙质角闪石和斜长石(An=31.6~54.8)组成的角闪岩相矿物平衡共生组合。在结构上,主要表现为石榴子石颗粒边部的次变边、保留石榴子石假象的粒状后生合晶和保留辉石假象的蠕虫状后生合晶等,其变质温压条件为530~610℃和0.67~0.81GPa。  相似文献   
888.
We report here for the first time, the occurrence of sapphirine+quartz assemblage in textural equilibrium from quartzo-feldspathic and pelitic granulites from southern India. The sapphirine-bearing rocks occur as layered gneisses associated with pink granite within massive charnockite in Rajapalaiyam area in the southern part of Madurai Block. Sapphirine occurs in three associations: (i) fine-grained subhedral mineral associated with quartz enclosed in garnet, (ii) intergrowth with Al-rich orthopyroxene (up to 9.7 wt.% Al2O3), and (iii) in symplectitic intergrowth with orthopyroxene (Al2O3= 5.9–6.7 wt.%) and cordierite surrounding garnet. The sapphirine in association with quartz is slightly magnesian (XMg = 0.79–0.80) and low in Si content (1.55–1.56 pfu) as compared with those associated with orthopyroxene and cordierite (XMg= 0.77–0.79, Si = 1.59–1.63 pfu). The sapphirine+quartz assemblage suggests that the granulites underwent T>1050 °C peak metamorphism. Cores of porphyroblastic orthopyroxene in the sapphirine-bearing rocks shows high-Al2O3 content of up to 9.7 wt.%, suggesting T = 1040–1060°C and P = 8 kbar. FMAS reaction of sapphirine+quartz→garnet+sillimanite+cordierite indicates a cooling from sapphirine+quartz stability field after the peak ultrahigh-temperature metamorphism. Slightly lower temperature estimates from ternary feldspar and sapphirine-spinel geothermometers (T = 950–1000°C) also support a post-peak isobaric cooling. Corona textures of orthopyroxene+cordierite (±sapphirine), orthopyroxene+sapphirine, and cordierite+spinel around garnet suggest subsequent decompression. The sapphirine-quartz association and related textures reported in this study have important bearing on the ultrahigh-temperature metamorphism and exhumation history of the Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   
889.
Petrological studies and electron microprobe dating of monazitefrom the mafic Andriamena unit, north–central Madagascar,indicate that an apparently continuous PT path inferredfor Mg-granulites is actually discontinuous, resulting fromthe superposition of two distinct metamorphic events at 2·5Ga and  相似文献   
890.
Some current methods for the calculation of the geogenetic depth are based on the hydrostatic model, it is induced that the depth in certain underground place is equal to the pressure divided by the specific weight of rock, on the assumption that the rock is hydrostatic and overlain by no other force but gravity. However, most of rock is in a deformation environment and non-hydrostatic state, especially in an orogenic belt, so that the calculated depth may be exaggerated in comparison with the actual depth according to the hydrostatic formula. In the finite slight deformation and elastic model, the relative actual depth value from the 3-axis strain data was obtained with the measurement of strain including that of superimposed tectonic forces but excluding that of time factor for the strain. If some data on the strain speed are obtained, the depth would be more realistically calculated according to the rheologicai model because the geological body often experiences long-term creep strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号