首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
  国内免费   23篇
地球物理   3篇
地质学   144篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   8篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   10篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
排序方式: 共有147条查询结果,搜索用时 187 毫秒
131.
Abstract The high-grade meta-plutonic rocks of this study lie entirely within the Jotun Nappe of the southern Norwegian Caledonides. They are divisible on the basis of metamorphic grade and petrographic character into three units, the Storadalen Complex (SCX), the Svartdalen Gneiss (SG), and the Mjølkedøla Purple Gabbro (MPG). The SCX is a differentiated series of ultrabasic to intermediate rocks now showing only tectonite fabrics. It has been metamorphosed to spinel-Iherzolite granulite facies grade. The broadly monzonitic SG is weakly tectonized and internally differentiated. Its metamorphic grade does not exceed plagioclase-lherzolite granulite facies grade. The mis-named MPG is also broadly of monzonitic composition but it retains a coarse ophitic texture, and is of amphibolite facies grade. A gradational boundary exists between the MPG and SG, but the contact between these two units and the SCX is the steeply dipping Tyin-Gjende Fault. The three units represent a comagmatic body of mid-Proterozoic age, metamorphosed during a Sveconorwegian event and finally dismembered and upthrust during the Caledonian Orogeny. The new trace element analyses reported here show that the three rock units have remarkably similar trace element abundances and trends. K-Rb covariation shows increasing K/Rb ratios with increasing K. These patterns were produced by magmatic fractionation processes acting at deep crustal levels, possibly in the presence of a non-aqueous fluid phase. With the exception of K and Sr, close similarities exist between the rocks of this study and present-day calc-alkaline basalts and andesites from island arcs. The high K content is regarded as a primary magmatic feature, but the available data are insufficient to indicate its origin. The Sr contents are abnormally high and are ascribed to metasomatism which occurred during either high-grade metamorphism or post-climactic cooling. There are no systematic geochemical variations with metamorphic grade or degree of deformation.  相似文献   
132.
Plagioclase rims around metastable kyanite crystals appear during decompression of high-pressure felsic granulites from the high-grade internal zone of the Bohemian Massif (Variscan belt of Central Europe). The development of the plagioclase corona is a manifestation of diffusion-driven transfer of CaO and Na2O from the surrounding matrix and results in isolation of kyanite grains from the quartz- and K-feldspar-bearing matrix. This process establishes Si-undersaturated conditions along the plagioclase–kyanite interface, which allow crystallization of spinel during low-pressure metamorphism. The process of the plagioclase rim development is modeled thermodynamically assuming local equilibrium. The results combined with textural observations enable estimation of equilibration volume and diffusion length for Na and Ca that extends ∼400–450 and ∼450–550 μm, respectively, around each kyanite crystal. Low estimated bulk diffusion coefficients suggest that the diffusion rate of Ca and Na is controlled by low diffusivity of Al across the plagioclase rim.  相似文献   
133.
A high‐P granulite facies gneiss complex occurs in north‐west Payer Land (74°28′?74°47′N) in the central part of the East Greenland Caledonian (Ordovician–Devonian) orogen. High‐P metamorphism of the Payer Land gneiss complex resulted in formation of the assemblages Grt + Cpx + Amp + Qtz + Ru ± Pl in mafic rocks, and Grt + Ol + Cpx + Opx + Spl in rare ultramafic pods. Associated metapelites experienced anatexis in the kyanite stability field. Peak metamorphic assemblages formed around 800–850 °C at pressures of c. 1.4–1.7 GPa, corresponding to crustal depths of c. 50 km. Mafic granulites contain abundant reaction textures, including the replacement of garnet by symplectites of Opx + Spl + Pl, indicating that the high‐P event was followed by decompression while the granulites remained at elevated temperatures. Charnockitic gneisses from Payer Land show evidence of late Archean (c. 2.8–2.4 Ga) crustal growth and subsequent Palaeoproterozoic (c. 1.85 Ga) metamorphism. The gneiss complex experienced intense reworking during the Caledonian continental collision. On the basis of Caledonian monazite ages recorded from the high‐P anatectic metapelites, the clockwise P–T evolution and formation of the high‐P granulite facies assemblages is related to Caledonian crustal thickening, which resulted in formation of eclogites approximately 300 km north of Payer Land. The Payer Land granulites comprise a metamorphic core complex, which is separated from the overlying low‐grade supracrustal rocks (the Neoproterozoic Eleonore Bay Supergroup) by a late Caledonian extensional fault zone, the Payer Land Detachment. The steep, nearly isothermal, unloading P–T path recorded by the granulites can be explained by erosional and tectonic unroofing along the Payer Land Detachment.  相似文献   
134.
New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica   总被引:12,自引:0,他引:12  
Abstract Granulite facies metapelites of the Mather and Filla Paragneisses within the Rauer Group, east Antarctica, possess markedly different compositions. The metamorphic evolution of the two metapelite types has been interpreted as temporally distinct, with the Rauer Group preserving at least two distinct granulite facies tectonothermal episodes. Calculated P–T pseudosections and orthopyroxene Al content indicate the revised maximum‐preserved P–T conditions within the Mather Paragneiss to lie in the vicinity of 950–975 °C and 10–10.6 kbar, less extreme than previous estimates. The range of possible P–T paths for the Mather Paragneiss consistent with mineral textural relationships and pseudosections contoured for mineral proportion are significantly shallower (dP/dT) than previous estimates. A near‐isothermal decompression P–T path, and extreme peak metamorphic conditions, are not necessary to explain the development of preserved mineral reaction textures. The Filla Paragneiss contains pelitic assemblages less amenable to rigorous quantitative analysis. Nevertheless, possibilities for the shared or otherwise metamorphic evolution of the Mather and Filla Paragneisses may be postulated on the basis of calculated pseudosections in the context of existing geochronology for the Rauer Group and preserved microstructures. A shared evolution, most likely during Pan‐African granulite facies metamorphism, is plausible and consistent with mineral assemblage development, geochronology and microstructures. A revised interpretation of the Rauer Group's preserved metamorphic evolution may warrant the revision of existing tectonic models, applicable also to the remainder of Prydz Bay. More generally, the employed approach may incite a revision of peak P–T and P–T paths in other granulite facies terranes.  相似文献   
135.
Precambrian granulites of the Aldan shield, eastern Siberia, USSR   总被引:17,自引:0,他引:17  
Abstract Precambrian granulites of the Aldan shield in southern Yakutia, USSR, form a massif of 200,000 km2 bounded by younger fold-belts to the south, west and east. The massif consists of several blocks that reflect a primary heterogeneity of composition and differences in structural and thermodynamic evolution of different parts of the area. According to structural and petrological data the massif can be divided into two megablocks: eastern Aldan and western Aldan. They are separated by a narrow meridional fold-belt. Structural evolution of this central zone was determined by the geodynamics of the mega-blocks and was completed in the late Archaean. Towards the south, this central zone is ‘transformed’into the relatively small Sutam block adjoining the Stanovoy fold-belt that bounds the Aldan shield on the south. The Sutam block is separated from the other structural units of the Aldan shield by a system of north trending grabens filled by post-Archaean sediments. The Aldan shield is composed of Archaean high-grade granulites, while the Stanovoy fold-belt, to the south, consists of highly foliated Proterozoic rocks metamorphosed under relatively lower-grade conditions. However, relics of the granulites are mapped within the fold-belt. They contain high-grade assemblages (e.g. Opx + Sil + Qz, Sap + Qz, Opx + Gr + Sil, etc.). One of the relics, the Tokskii block, which is only slightly touched by diaphthoresis, is located in the southeastern part of the Stanovoy fold-belt. Metamorphic conditions of the Tokskii block are compared with those of the Sutam block and a similar evolution of the units is revealed. Mineral assemblages and mineral compositions do not vary within each unit, but they change in a north-south direction. The Opx + Sil + Qz assemblage has been found only in Sutam and Tok, but not in eastern Aldan and western Aldan. The Sap + Qz assemblage has been found in the Tokskii block but has not yet been found in the Sutam block. The pyrope content in garnets, from metapelites of both blocks, is significantly higher than that from the Aldan (eastern and western blocks) rocks to the north. The most important assemblages from different units of the Aldan shield have been studied using the electron microprobe in order to unravel the metamorphic evolution of the granulites and thus to deduce the thermodynamic regime of this evolution. A geodynamic model for the Aldan shield is discussed in terms of Archaean island arc development.  相似文献   
136.
U–Pb age data collected from zircon and monazite are used to draw fundamental inferences about tectonic processes in the Earth. Despite the emphasis placed on zircon and monazite ages, the understanding of how to relate the timing of growth of zircon and monazite to an evolving rock system remains in its infancy. In addition, few studies have presented large datasets of geochronological data from zircon and monazite occurring in the same metamorphic rock sample. Such information is crucial for understanding the growth of zircon relative to monazite in a systematic and predictive manner, as per this study. The data that exist support the generally held conception that zircon ages tend to be older than monazite ages within the same rock. Here experimental data for zircon and monazite saturation in melt-bearing rocks are integrated with phase diagram calculations. The calculations constrain the dissolution and growth behaviour of zircon and monazite with respect to evolving pressure, temperature and silicate mineral assemblages in high-grade, melt-bearing, metasedimentary rocks. Several key results emerge from this modelling: first, that in aluminous metapelitic rocks (i.e. garnet + cordierite + sillimanite assemblages), zircon ages are older than monazite ages in the same rock; second, that the growth rate of accessory minerals is nonlinear and much higher at and near saturation than at lower temperatures; and third, that the difference in zircon and monazite ages from the same rock may be ascribed to differences in the temperature(s) at which zircon and monazite grow rather than differences in closure temperature systematics. Using our methodology the cooling rate of granulites from the Reynolds Range, central Australia, have been constrained at ∼4 °C Myr−1. This study serves as a first-pass template on which further research in applying the technique to a field study can be based.  相似文献   
137.
Alternative assignment of invariant point stabilities in a possible P – T  phase diagram is given by a family of grids that derives from a form of the Euler equation. Invariant points are represented by great circles that divide the surface of a sphere (the Euler sphere) into polygonal regions that correspond to the number of potential solutions or grids in n -component systems with n +3 non-degenerate phases. A particular invariant point is stable in all grids on one side of the great circle and metastable on the other. The advantage of this representation is the ease and efficiency by which all grids consistent with experimental and theoretical constraints can be identified. The method is well suited for systems of n +3 phases in which the thermochemical data necessary for direct calculation of the phase diagram is either uncertain or non-existent for one or more of the phases. The mass balance equations among the n +3 phases of interest define the Euler sphere for any particular system. There is a unique Euler sphere for unary systems, and another for binary systems. Ternary and quaternary systems have four and 11 different types of Euler spheres, respectively. In the ternary case with six phases, the 16 non-degenerate chemographies belong to four groups that are associated with the four Euler spheres. An analysis of those groups shows a close relationship between the topologies of the chemographies and the topologies of the grids represented on the Euler sphere. Euler spheres for degenerate chemographies are characterized by a smaller number of spherical polygons. A useful application of the Euler sphere concept is the systematic derivation of possible FMAS petrogenetic grids from subsystem constraints. Assumption of just one stable invariant point in each of MAS and FAS systems is consistent with seven FMAS grids involving cordierite, garnet, hypersthene, quartz, sapphirine, sillimanite and spinel.  相似文献   
138.
Basic granulites occurring as small enclaves and pods within charnockites contain predominantly orthopyroxene, clinopyroxene, hornblende, plagioclase feldspar and quartz. Chemical composition of coexisting orthopyroxene, clinopyroxene, plagioclase and hornblende has been represented in ACF and AFM diagrams. The mineral assemblages and the textural relationships of the basic granulites have been described. Garnet is notably absent in the basic granulites and this is explained as due to lower (< 8 kbar) pressure and relatively magnesian bulk composition.  相似文献   
139.
苏文  刘振先  陈菲  高静  李晓光 《岩石学报》2019,35(1):252-260
本项目通过对商用布鲁克Vertex 70v真空型红外光谱仪进行拓展,来构建一套水平红外光路的系统,并与红宝石测压系统、外加温温控系统联用,适用于高压、高/低温测量的傅立叶变换红外显微系统,从而真正实现在原位条件下观察与研究地球内部物质的性质和结构特征的实验平台。在此平台上,模拟并观察在俯冲带中不同深度(温压)环境下的绿帘石红外光谱特征,同时结合拉曼光谱特征,了解晶体结构和晶体化学的稳定性、水溶解度、高压化学和高压物理学现象,从而窥视洋壳/陆壳俯冲全过程中矿物物理化学性质及其水循环的动力学演化。  相似文献   
140.
Abstract Metapelitic and charnockitic granulites exposed around Chilka Lake in the northern sector of the Eastern Ghats, India, preserve a multi-stage P—T record. A high-T decompression from above 10 kbar to 8 kbar around 1100°C has been determined from Mg-rich metapelites (XMg>0.60) with quartz-cordierite-orthopyroxene-sillimanite and cordierite—orthopyroxene—sapphirine—spinel assemblages. Between this and a second decompression to 6.0 kbar, isobaric cooling from 830 to 670°C at 8 kbar is evident. These changes are registered by the rim compositions of orthopyroxene and garnet in charnockites and metapelites with an orthopyroxene—quartz—garnet—plagioclase—cordierite assemblage, and are further supported by the garnet + quartz ± orthopyroxene + cordierite and biotite-producing reactions in sapphirine-bearing metapelites. Another indication of isobaric cooling from 800 to 650°C at 6.0 kbar is evident from rim compositions of orthopyroxene and garnet in patchy charnockites. Two sets of P—T values are obtained from metapelites with a quartz—plagioclase—garnet—sillimanite—cordierite assemblage: garnet and plagioclase cores yield 6.2 kbar, 700°C and the rims 5 kbar, 650°C, suggesting a third decompression. The earliest deformation (F1) structures are preserved in the larger charnockite bodies and the metapelites which retain the high P—T record. The effects of post-crystalline F2 deformation are observed in garnet megacrysts formed during or prior to F1 in some metapelites. Fold styles indicate a compressional regime during F1 and an extensional regime during F2. These lines of evidence and two phases of cooling at different pressures point to a discontinuity after the first cooling, and imply reworking. Two segments of the present P—T path replicate parts of the P—T paths suggested for four other granulite terranes in the Eastern Ghats, and the sense of all the paths is the same. This, plus the signature of three phases of deformation identified in the Eastern Ghats, suggests that the Chilka Lake granulites could epitomize the metamorphic evolution of the Eastern Ghats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号