首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   25篇
地球物理   1篇
地质学   55篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   8篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2006年   3篇
  2005年   3篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
11.
武晗 《地质找矿论丛》2022,37(4):490-500
秘鲁马尔科纳(Marcona)铁矿区北部TA-02勘查区蕴含丰富的铜矿和铁矿资源,并伴生锌、钴等矿产资源。TA-02勘查区处于环太平洋构造-岩浆活动带的东侧,西南部发育有圣尼古拉斯(San Nicolás)岩基,胡斯塔(Justa)断裂控制了区内的铁、铜矿化及阳起石化蚀变带,是勘查区内(铁)铜矿体的主要控矿构造;胡斯塔断裂内常充填磁铁矿体、铜矿体及不同种类的脉岩,矿体形态以脉状为主;矿石中含铜矿物主要为黄铜矿,伴生/共生金属矿物主要为磁铁矿、赤铁矿、钴矿物、闪锌矿等,铜矿化与铁矿化具有高度的一致性,共/伴生关系密切,二者呈正相关关系,因此铜矿区呈现较高的磁异常;此外,矿体穿切地层,赋矿围岩无专属性,围岩蚀变以阳起石化蚀变为特征。研究认为,TA-02勘查区铜多金属矿属于IOCG型(氧化铁型铜-金)矿床。  相似文献   
12.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   
13.
A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide–copper–gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.
Julie HuntEmail:
  相似文献   
14.
A ground gravity survey over the Bondy gneiss complex and its mineralized iron oxide- and copper-rich hydrothermal system(s) in the Grenville Province of SW Quebec was undertaken to aid mineral exploration in mapping subsurface intrusions. Several kilometric-scale positive Bouguer anomalies were identified that coincide with outcropping mafic and intermediate intrusive rocks of the post peak-metamorphic, 1.17-1.16 Ga mafic to intermediate Chevreuil suite intrusions and a 1.09-1.07 Ga Rolleau ultramafic stock. An additional 4 × 3 kilometre positive gravity anomaly indicates a mafic body underlies part of the metamorphosed hydrothermal system in the area of magnetite, pyrite, pyrrhotite, and chalcopyrite mineralization. Advanced argilic alteration associated with sulphide enrichment here is however indicative of an epithermal system with a felsic intrusion fluid source. As a felsic intrusion cannot explain the positive Bouguer gravity anomaly both felsic and mafic bodies must be present beneath the mineralized zone. Our preferred interpretation based on integrating gravity data and 2D forward gravity modelling with the results of field and geochemical studies is that this anomaly corresponds to a ca. 500 m deep mafic 1.17-1.16 Ga Chevreuil suite pluton that may have provided the source for hydrothermal fluids associated with late ductile shear- and fault-related mineralization or remobilization of early mineralization associated with a felsic pluton into late structures. This interpretation is compatible with gabbro xenoliths in the 1.07 Ga Rivard lamprophyre dyke on the NW margin of the gravity anomaly that bear significant similarities with those of the Chevreuil intrusive suite. The presence of both early felsic and late mafic intrusions beneath a group of three mineral occurrences in the Bondy gneiss complex strengthens their prospectivity in comparison to other mineral occurrences in the area. That early, pre-metamorphic mineralization was upgraded late in the tectonothermal evolution during a subsequent igneous and deformation event agrees with interpretations of other IOCG-style deposits in the Lac Manitou area of the eastern Grenville Province.  相似文献   
15.
探讨和总结了扬子地块西缘大地构造演化、元古宙重大构造-岩浆事件与铁氧化物铜金型(IOCG)矿床关系,以促进对深部隐伏IOCG矿床勘查和新技术研发。在新太古界-古元古界小溜口岩组顶部和不整合面之下,含矿层状-似层状碱性方解石钠长石岩中锆石SHRIMP U-Pb年龄为2520±14 Ma,这种似层状铜矿床和其上不整合面型Cu-Co-AuAg-REE-Fe矿体,以云南东川因民铁铜矿床深部小溜口岩组中铜矿床为代表。总体上,IOCG矿床与扬子地块大地构造演化之间关系为:(1)扬子地块于东川运动(中条运动/Hudsonian Orogeny,1800 Ma)形成了陆壳基底。在中元古代初期(1700±50 Ma)发生了地幔热物质上涌侵位的构造-岩浆事件,导致古扬子地块发生裂解并形成裂谷构造和大陆裂谷盆地。在近东西向大陆裂谷盆地发育初期,构造动力学特征为火山地堑式断陷成盆。在碱性铁钠质基性岩、铁钾质粗面岩和铁质辉绿辉长岩形成过程中,形成了第一期IOCG矿床成岩成矿高峰期(1650±50 Ma),以云南大红山IOCG矿床为代表。(2)在裂谷盆地成熟发育期,构造动力学特征为裂陷沉降成盆。因民期和黑山期两次地幔热物质上涌侵位,导致了构造-岩浆-成岩成矿事件发生。在铁钠质基性火山岩、铁钾质粗面岩、水下火成碳酸岩、火山喷溢-火山热水喷流沉积相等形成过程中,形成了第二期IOCG矿床的成岩成矿高峰期(1500±50 Ma),以云南迤纳厂IOCG矿床为代表。(3)在小黑箐运动/满银沟运动(格林威尔造山期,1000 Ma±),扬子地块南缘形成了近南北向洋壳俯冲和陆缘侧向挤压收缩体制,碱性铁质辉长岩-辉绿岩体上涌侵位,伴随同构造期脆韧性剪切带形成和沉积盆地构造反转,形成区域性不整合面(小黑箐运动/满银沟运动)和后期沉积型-火山沉积型铁矿床,为IOCG矿床第三期成岩成矿高峰期(1000±100 Ma)。以白锡腊深部和新塘IOCG矿床为代表,形成IOCG矿床和IOCG矿床的叠加成岩成矿。(4)晋宁-澄江期为多重构造体制耦合与转换格局,扬子地块内部和陆缘具有造山带-沉积盆地-深部地幔柱上涌侵位,深部地幔柱上涌侵位形成的碱性铁质辉长岩具有OIB源区特征,形成了第四期IOCG矿床的成岩成矿高峰期(800±50 Ma),以四川拉拉IOCG矿床受碱性铁质辉长岩侵位与叠加成岩成矿为代表。在澄江期"盆→山"耦合与转换,IOCG矿床和东川型铜矿中进一步发生了盆地流体叠加改造富集(810~700 Ma)。  相似文献   
16.
智利科皮亚波地区地处海岸山带东侧的智利铁带北段,已发现多个中—大型磁铁矿型IOCG矿床,该类矿床的形成与大洋俯冲背景下陆缘弧中性—铁镁质火山岩和火山-沉积建造中早白垩世中酸性岩浆岩的侵入中心密切相关.该成矿带大面积被第四系砂砾层覆盖,在成矿地质特征研究基础上,采用综合地球物理方法对覆盖层下隐伏矿床(体)进行定位预测成为...  相似文献   
17.
申金超  曾勇  郭坤一 《江苏地质》2012,36(4):391-396
对湖北大冶铁矿的岩浆类型、矿体形态、矿石特征、围岩蚀变、成矿物质来源等进行分析,发现湖北大冶铁矿具备IOCG(铁氧化物-铜-金)型矿床的定义性特征,即铁氧化物含量高,伴生黄铜矿,贫硫化物、低钛,广泛受Na、K蚀变的热液矿床。另外,大冶铁矿与中酸性岩浆关系密切,且成矿物质来源于岩浆。作为IOCG型的大冶铁矿,其成矿环境为与非造山岩浆有关的大陆地块内部。  相似文献   
18.
武定迤纳厂矿床位于我国云南省中部,在大地位置上处于扬子板块西缘,康滇地轴云南段,是滇中具有代表性的元古代铁-铜-金-稀土矿床.其矿化作用分为岩浆气液期、交代成矿期、热液成矿期和成矿后热液期4个期次,其中前3个期次是铁成矿的主要期次,分别以角砾状磁铁矿、浸染状磁铁矿和粗粒脉状磁铁矿为代表.各类磁铁矿含有一定量的SiO2、Cr2O3、Al2O3、MgO等,角砾状磁铁矿石的主元素成分与铁成分比值最高,其次为浸染状磁铁矿,最低为脉状磁铁矿.不同类型的磁铁矿微量元素变化很大,浸染状磁铁矿稀土配分具四重效应,角砾状磁铁矿和粗粒脉状磁铁矿稀土配分为右倾型.成矿早期磁铁矿的形成受岩浆作用影响强烈,含铁的岩浆导致围岩碎裂,形成了早期角砾状矿石;交代成矿期的铁质主要源于岩浆演化晚期分异形成的富铁流体,富铁流体与围岩发生强烈的物质交换,导致大量铁质沉淀;随着矿化作用的进行,热液作用逐渐增强,加之外界流体的逐渐加入,对之前形成的磁铁矿进行改造,使其具有热液成因的表象特征.从矿物成分体现出的矿床成因上看,该矿床属于岩浆隐爆-交代型成因,与世界知名的IOCG型矿床有相似之处.  相似文献   
19.
A Late Cretaceous to Early Oligocene episode of paleoweathering and supergene activity has been identified within the Jurassic-age (170 Ma) Humboldt mafic complex (HMC) and associated Boyer Ranch Formation of west-central Nevada, USA. This episode is responsible for significant subaerial weathering, erosion, oxidation and most importantly local supergene metal enrichment which could potentially have a major economic impact upon iron oxide copper-gold (IOCG)-style mineralization within the complex and in the Boyer Ranch Formation. Paleoweathering profiles that developed on the exposed Jurassic surface during this time now mark an angular unconformity (J-T unconformity) with a stratigraphically overlying, Tertiary (Oligocene) rhyolitic volcanic-volcaniclastic sequence.Differential uplift of the Jurassic surface is a direct result of the Middle and/or Late Jurassic Luning-Fencemaker compressional overthrust faulting event during which the entire complex was tectonically transported to its present location. The uplifted Jurassic paleosurface experienced one or more cycles of weathering, erosion, depression of the water table and uninterrupted supergene activity beginning at the end of the Cretaceous and possibly accelerating during the Paleocene-Eocene Thermal Maximum Event (∼56 Ma). Geochemically mature supergene Cu-oxide profiles developed over exhumed mineralized sections in terrains with favorable fault block movements. These paloweathering systems evolved from moderately acidic pH to near-neutral or slightly alkaline pH environments over time. High protolith reactivity and low hypogene pyrite concentrations modified acidity of supergene fluids thus limiting Cu mobility.Profiles that survived erosion were later buried and preserved by the Oligocene-age rhyolitic volcanic-volcaniclastic sequence before the onset of mid-Tertiary Basin and Range normal faulting. Subsequent partial unroofing of overlying Tertiary volcanic cover resulted in further erosion of some profiles. Erosional remnants mapped in the field include all or some components of the original supergene Cu-oxide profiles. Drilling results suggest profiles that remain buried are generally intact.Although this field-oriented study is considered preliminary, it concludes that known Jurassic-age IOCG-style mineral occurrences in the central HMC have been subjected to prolonged subaerial paleoweathering and supergene activity that has not been previously recognized. Where complete or nearly complete profiles are preserved, efficient cumulative Cu-enrichment to potentially ore grades has been documented in well defined oxide zones. These findings can be extrapolated to the entire J-T unconformity along which concealed and enriched deposits may exist. As such, the unconformity is considered a prime exploration target that is highly prospective for new discoveries of economically viable, supergene-enriched IOCG resources.  相似文献   
20.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号