首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   3篇
地球物理   37篇
地质学   20篇
自然地理   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1986年   1篇
排序方式: 共有59条查询结果,搜索用时 421 毫秒
31.
In west-central Nevada, the Oligocene Candelaria pyroclastic sequence reaches a local thickness of up to 1.3 km, in what has been referred to as the Candelaria trough, but more generally the accumulation of ash-flow tuffs and related volcanic rocks is less than 300 m thick. Complete to near complete outcrops are scattered over about 3200 km2 in the Candelaria Hills and surrounding ranges of the Southern Walker Lane structural zone. Three regionally extensive compound cooling units within the overall sequence (25.8 Ma Metallic City, 24.1 Ma Belleville, and 23.7 Ma Candelaria Junction Tuffs) have distinguishing characteristics and are the focus of study. At 106 sites, anisotropy of magnetic susceptibility (AMS) data provide an estimate of transport direction of each tuff. Inferred transport directions based on the AMS data are corrected for a modest clockwise, yet variable magnitude, vertical axis rotation that affected these rocks in late Miocene to Pliocene time, as revealed by paleomagnetic studies. The AMS data show a somewhat orderly pattern of magnetic fabrics that we interpret to define unique transport directions for the Metallic City and Candelaria Junction Tuffs. The low susceptibility and degree of anisotropy of the Belleville Tuff limits our interpretation from this pyroclastic deposit. The Metallic City and Candelaria Junction Tuffs typically show gentle, south–southeast and southeast dipping magnetic fabric imbrication, respectively, and very gently plunging magnetic lineations. These AMS fabric elements indicate the tuffs were transported to the north–northwest and northwest, respectively. The AMS fabric data from the Metallic City and Candelaria Junction Tuffs suggest relatively unrestricted flow during emplacement. Evidence across the 3,200 km2 area to support more regionally controlled channelized flow into and/or flow along the east northeast–west southwest axis of the Candelaria trough is lacking. The ignimbrites clearly filled a topographic depression inferred to have formed concurrent with early, localized Basin and Range extension during pyroclastic emplacement, but based on the uniformity of AMS fabric data, we infer that the depression quickly filled and did not hinder flow across the region. Unrecognized eruptive centers for the three ignimbrites may lie buried beneath Neogene basin fill sediments south–southeast of the Candelaria Hills or concealed below younger deposits farther southeast into the Palmetto Mountains. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Revised and prepared for publication in the Bulletin of Volcanology.  相似文献   
32.
New Sr and Nd isotope data for whole rocks, glasses and minerals are combined to reconstruct the nature and origin of mixing end-members of the 200 km3 trachytic to phonolitic Campanian Ignimbrite (Campi Flegrei, Italy) magmatic system. The least-evolved magmatic end-member shows equilibrium between host glass and the majority of the phenocrysts and is less radiogenic in Sr and Nd than the most-evolved magma. On the contrary, only the Fe-rich pyroxene from the most-evolved erupted magma is in equilibrium with the matrix glass, while all other minerals are in isotopic disequilibrium. These magmas mixed prior to and during the Campanian Ignimbrite eruption and minerals were freely exchanged between the magma batches. Combining the results of the geochemical investigations on magma end-members with geophysical and geological data, we develop the following scenario. In stage 1, a parental, less differentiated magma rose into the middle crust, and evolved through combined crustal assimilation and crystal fractionation. In stage 2, the differentiated magma rose to shallower depth, fed the pre-Campanian Ignimbrite activity and evolved by further open-system processes into the most-evolved and most-radiogenic Campanian Ignimbrite end-member magma. In stage 3, new trachytic magma, isotopically distinct from the pre-Campanian Ignimbrite magmas, rose from ca. 6 km to shallower depth, recharged the most-evolved pre-Campanian Ignimbrite magma chamber, and formed the large and stratified Campanian Ignimbrite magmatic system. During the course of the Campanian Ignimbrite eruption, the two layers were tapped separately and/or simultaneously, and gave rise to the range of chemical and isotopic values displayed by the Campanian Ignimbrite pumices, glasses and minerals.  相似文献   
33.
Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.  相似文献   
34.
40Ar/39Ar ages and paleomagnetic correlations using characteristic remanent magnetizations (ChRM) show that two main ignimbrite sheets were deposited at 4.86 ± 0.07 Ma (La Joya Ignimbrite: LJI) and at 1.63 ± 0.07 Ma (Arequipa Airport Ignimbrite: AAI) in the Arequipa area, southern Peru. The AAI is a 20–100 m-thick ignimbrite that fills in the Arequipa depression to the west of the city of Arequipa. The AAI is made up of two cooling units: an underlying white unit and an overlying weakly consolidated pink unit. Radiometric data provide the same age for the two units. As both units record exactly the same well-defined paleomagnetic direction (16 sites in the white unit of AAI: Dec = 173.7; Inc = 31.2; α95 = 0.7; k = 2749; and 10 sites in the pink unit of AAI; Dec = 173.6; Inc = 30.3; α95 = 1.2; k = 1634), showing no evidence of secular variation, the time gap between emplacement of the two units is unlikely to exceed a few years. The >50 m thick well-consolidated white underlying unit of the Arequipa airport ignimbrite provides a very specific magnetic zonation with low magnetic susceptibilities, high coercivities and unblocking temperatures of NRM above 580°C indicating a Ti-poor titanohematite signature. The Anisotropy of Magnetic Susceptibility (AMS) is strongly enhanced in this layer with anisotropy values up to 1.25. The fabric delineated by AMS was not recognized neither in the field nor in thin sections, because most of the AAI consists in a massive and isotrope deposit with no visible textural fabric. Pumices deformation due to welding is only observed at the base of the thickest sections. AMS within the AAI ignimbrite show a very well defined pattern of apparent imbrications correlated to the paleotopography, with planes of foliation and lineation dipping often at more than 20° toward the expected vent, buried beneath the Nevado Chachani volcanic complex. In contrast with the relatively small extent of the thick AAI, the La Joya ignimbrite covers large areas from the Altipano down the Piedmont. Ti-poor titanomagnetites are the dominant magnetic carriers and AMS values are generally lower than 1.05. Magnetic foliations are sub horizontal and lineations directions are scattered in the LJI. The AMS fabrics are probably controlled by post-depositional compaction and welding of the deposit rather than transport dynamics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
35.
Clearly defined distal tephras are rare in rockshelter sediment records. Crvena Stijena, a Palaeolithic site in Montenegro, contains one of the longest (> 20 m) rockshelter sediment records in Europe with deposits ranging in age from Middle Pleistocene to mid-Holocene. A distinctive tephra is clearly exposed within the well stratified record approximately 6.5 m below the present land surface. We present geochemical data to confirm that this tephra is a distal equivalent of the Campanian Ignimbrite deposits and a product of the largest Late Pleistocene eruption in Europe. Originating in the Campanian volcanic province of southwest Italy, this tephra has been independently dated to 39.3 ka. It is a highly significant chronostratigraphic marker for southern Europe. Macrostratigraphic and microstratigraphic observations, allied with detailed particle size data, show that the tephra layer is in a primary depositional context and was transported into the rockshelter by aeolian processes. This site is unique because the tephra forms an abrupt boundary between the Middle and Upper Palaeolithic records. Before they can be used as chronostratigraphic markers in rockshelter and cave-mouth environments, it is essential to establish the stratigraphic integrity of distal tephras and the mechanisms and pathways involved in their transport and deposition.  相似文献   
36.
Ground penetrating radar (GPR) method is used as a tool to identify the zonation boundaries in ignimbrite series through their columnar section. Ignimbrites can be classified in terms of welding degree, colour, texture and mineralogical compositions. The research area comprises a part of İncesu (Kayseri) ignimbrite at Central Anatolia, Turkey. This ignimbrite is divided into three levels and each level has clear differences in terms of macroscopic and microscopic views. This paper presents the results of an application of GPR for the determination of zonation boundary within the ignimbrite flow unit in the view of their textural and petrological features. RAMAC CU II equipment was used with 250 MHz shielded antenna on parallel ten profiles to observe the physical difference among the ignimbrite levels of the study area. Two levels out of three have been defined at the İncesu ignimbrite and supported by field geology and petrographical studies. The first level, which is extremely fractured structure, is about 1.5 m thick and matches with middle level of the İncesu ignimbrite. The second level has an average 50–75 cm thickness and matches with lower level of the ignimbrite. In this manner, vertical lithological variations should be taken into consideration during petrological investigation of the ignimbrites.  相似文献   
37.
The presence of an independently dated marker in an archaeological site offers rare opportunities for assessing the reliability of radiocarbon dates, especially when these are close to the age limit of the technique. Two different pretreatment protocols (routine ABA and more rigorous ABOx-SC) were employed in the chemical preparation of the same charcoal sample from a layer closely associated to the Campanian Ignimbrite tephra at the Russian Palaeolithic site of Kostenki 14 (Markina Gora). The ABA-treated fraction gave an age of ∼33 14C ka BP, comparable to a previous determination from the same layer, whereas the ABOx-SC produced an older age of ∼35 14C ka BP. This is the first radiocarbon determination of an archaeological sample to provide an age consistent with the “calendar” age for the CI tephra marker.  相似文献   
38.
Sole marks, which are common in turbidites, have been observed as casts at the base of the Abrigo Ignimbrite on Tenerife, Canary Islands. They have been engraved by pebble to cobble-sized lithic tools in a soft, cohesive fine-grained substrate. The casts range from long, parallel groove marks, often with the tool embedded at their termination, to short, elongate impact marks and are useful as a flow-direction marker. They were formed from a highly energetic pyroclastic flow pulse and were almost immediately infilled with ash after rapid waning of flow. Large lithic tools, which formed groove marks, were held in place under high gas and grain dynamic pressures and moved forward by their own momentum and the drag force exerted by a highly concentrated granular flow. Impact marks were formed by smaller lithic tools, which had more freedom of movement within the agitated, chaotic flow. Scour structures on the lee side of stationary lithic tools may have formed by local turbulence in their wake.Editorial responsibility: T. Druitt  相似文献   
39.
40.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号