首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   16篇
  国内免费   47篇
测绘学   1篇
地球物理   56篇
地质学   376篇
海洋学   3篇
天文学   2篇
综合类   7篇
自然地理   15篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   12篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   13篇
  2015年   9篇
  2014年   15篇
  2013年   35篇
  2012年   28篇
  2011年   14篇
  2010年   12篇
  2009年   28篇
  2008年   27篇
  2007年   23篇
  2006年   21篇
  2005年   21篇
  2004年   20篇
  2003年   11篇
  2002年   11篇
  2001年   11篇
  2000年   19篇
  1999年   12篇
  1998年   7篇
  1997年   8篇
  1996年   9篇
  1995年   11篇
  1994年   4篇
  1993年   11篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
151.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   
152.
The Lugo gneiss dome, in the NW Iberian Massif (Spain) is a Variscan structure developed during late stages of orogenic collapse. Crustal extension was mainly accomplished by two kilometre-scale conjugate extensional shear zones and by the late development of the dome and a huge normal fault. These structures overprint previous contractional recumbent folds and a thrust fault. The Lugo dome and its southward continuation, the Sanabria dome, are the site of the conspicuous Eastern Galicia Magnetic Anomaly (EGMA), a N–S band, 50 km wide and 190 km long, with a maximum amplitude of 190 nT. Integrated potential field modelling of the EGMA and its corresponding gravity signature have been carried out aided by constraints provided by the measurement of c. 900 magnetic susceptibilities and by previous geophysical data, mainly seismic refraction and reflection profiles. Results suggest that a large volume of low-density migmatites and associated inhomogeneous granites are the main source of the magnetic anomaly. Small massifs of basic and ultrabasic rocks inside the migmatites and high-susceptibility iron ore bodies sparsely distributed in low-grade Middle Ordovician slates are also thought to contribute to the anomaly but to a minor extent. Although otherwise similar to other gneiss domes, the Lugo dome is accompanied by a striking magnetic anomaly whose origin is discussed in terms of the tectonic evolution of this structure and the provenance of the magnetite-bearing migmatites and inhomogeneous granites that core it.  相似文献   
153.
Seismic study on oceanic core complexes in the Parece Vela back-arc basin   总被引:1,自引:0,他引:1  
Yasuhiko  Ohara  Kyoko  Okino  Junzo  Kasahara 《Island Arc》2007,16(3):348-360
Abstract   In the present study the seismic structure of oceanic core complexes (OCC) in the Parece Vela Basin, Philippine Sea have been imaged. Together with recent work on the Atlantis Massif OCC on the Mid-Atlantic Ridge, including deep drilling, this work provides an unprecedented opportunity to advance our understanding of OCC internal structure. A continuous, strong and relatively smooth reflection that was ca 0.15 s (two way time) below the sea floor of an OCC in the Chaotic Terrain of the Parece Vela Basin was identified. This reflection, termed the D-reflector, is similar to that observed beneath Atlantis Massif. A faster P-wave velocity (>6 km/s) is observed very shallow beneath the Chaotic Terrain OCC, suggesting that the core of these OCC is dominantly gabbroic. The D-reflector might be common beneath OCC, owing to localized alteration along fractured zones within gabbro. We further observed a series of three detachment events in the Chaotic Terrain. The first and second detachments exhumed shallow basaltic crust to deeper gabbroic core, whereas the last one only exhumed shallow basaltic crust.  相似文献   
154.
The Late Hercynian evolution in the French Massif Central corresponds to the transition from a LP–HT (M3 event at 314 ± 5 Ma) to a higher temperature metamorphism corresponding to the emplacement of the Velay granite dome (M4 event at 301 ± 5 Ma). This transition is outlined by the development of sillimanite folia, which represent planes of base-cation leaching, associated with ductile deformation. This evolution implies a counterclockwise retrograde PTt path under subsolidus conditions between M3 and M4. To cite this article: P. Barbey et al., C. R. Geoscience 337 (2005).  相似文献   
155.
A target of our study was the Bohemian Massif in Central Europe that was emplaced during the Variscan orogeny. We used teleseismic records from ten broadband stations lying within and around the massif. Different techniques of receiver function interpretation were applied, including 1-D inversion of R- and Q-components, forward modelling of V s velocity, and simultaneous determination of Moho depth and Poissons ratio in the crust. These results provide new, independent information about the distribution of S wave velocity down to about 60 km depth. In the area of Bohemian Massif, the crustal thickness varies from 29 km in the NW to 40 km in the SE. A relatively simple velocity structure with gradually increasing velocities in the crust and uppermost mantle is observed in the eastern part of the Bohemian Massif. The western part of the massif is characterized by more complicated structure with low S wave velocities in the upper crust, as well as in the uppermost mantle. This could be related to tectono-magmatic activity in the Eger rift that started in the uppermost Cretaceous and was active in the West Bohemia-Vogland area till the late Cenozoic.  相似文献   
156.
Regional geophysical data from detailed gravity survey, airborne magnetometry and gamma-ray spectrometry were analysed in order to determine the subsurface extent of contrasting geological bodies and to highlight subtle anomalies which can be related to the occurrence of earthquake swarms. Potential field data were compiled into contour and colour-shaded relief maps suitable for detecting structural tectonic elements. A shaded relief map of the horizontal gradient of gravity was used to detect considerable structural and tectonic features. The results of airborne gamma-ray spectrometry, showing the regional total gamma-ray activity, abundance of uranium, thorium and potassium, were included in this study. Only the two most instructive maps – the total gamma-ray activity and the abundance of potassium are shown. The main line of epicentres Nový Kostel – Poátky coincides well with the N-S configuration of abundances of these natural radioactive elements. The epicentres of micro-earthquakes detected by the local seismological network KRASLICE for the 1991 to 1998 period were plotted in the geophysical maps. The hypocentres of earthquakes in the main epicentral zone at Nový Kostel were projected onto the crustal density model based on the interpretation of seismic reflection profile 9HR and gravity data. The average distance between the Nový Kostel epicentral zone and the seismic profile was 4-5 km. Based on the interpretation of gravity data the hypocentres of the main epicentral zone seem to be associated with the western margin of the Eibenstock - Nejdek (Karlovy Vary) Pluton and, beside that, they follow the depth level where the allochthonnous part of the Saxothuringian Zone is thrust over the European parautochton. A drawing of the geodynamic model of the area is also shown.  相似文献   
157.
A working model of tectono-sedimentary evolution is proposed for the Cheb Basin, a polyhistory sedimentary basin formed between the late Oligocene and Pliocene by reactivation of basement fracture systems in the northwestern part of the Bohemian Massif. The basin is located at the intersection of the Ohe (Eger) Graben structural domain, characterized by dominance of NE-striking graben systems in present-day geology, and the NW-striking Cheb-Domalice Graben, a major strike-slip – dominated structure in Western Bohemia. The first significant depositional episode in the Cheb Basin coincides with the deposition of late Oligocene-Miocene clastics in the whole extensional system of the Ohe Graben, controlled by E-W – trending depocenters. The main structural feature of the Cheb Basin region at that time was a palaeohigh caused by a NW- trending accommodation zone separating minor E-W – trending depocentres. The second, late Pliocene, episode of sedimentation occurred under a very different kinematic regime than the Oligo-Miocene rift basin evolution. During this time, the present-day structure of the Cheb Basin and the Cheb-Domalice Graben formed as a consequence of sinistral displacement on the Mariánské Lázn Fault Zone. Reactivation of this strike-slip fault zone led to the formation of a horsetail splay of oblique-extensional faults at the northern termination of the Mariánské Lázn Fault Zone, which contained the present-day Cheb Basin.  相似文献   
158.
Geothermal aspects of the hypothesis, relating the earthquake swarms in the West Bohemia/Vogtland seismoactive region to magmatic activity, are addressed. A simple 1-D geothermal model of the crust was used to assess the upper limit of the subsurface heating caused by magma intrusion at the assumed focal depth of 9 km. We simulated the process by solving the transient heat conduction equation numerically, considering the heat of magma crystallization to be gradually released in the temperature interval 1100°C to 900°C. The temperature field prior to the intrusion was in steady-state with a surface temperature of 10°C and heat flow of 80 mWm –2 , the temperature at the 9 km depth was 270°C. The results suggest that the temperature and heat flow in the uppermost 1 km of the crust begin to grow 100 ka after the intrusion emplacement only, and that the amplitudes of the changes for the realistic lateral extent (a few kilometres) of the intrusion are very small. It was also found that the rate of magma solidification depends strongly on the thickness of the intrusion. It takes about 100 years for a 50 m thick sill to cool down from 1100°C to 600°C, which value represents the lower limit of the solidus temperature. The same cooling takes only 60 days if the sill is 2 m thick. If the nature of the strongly reflected boundaries, interpreted from the January 1997 Nový Kostel seismograms, is connected with the fresh emplacement of magma, the calculated cooling rates have a predictive potential for the temporal changes of the waveforms.  相似文献   
159.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   
160.
Graphitic cherts are interbedded within terrigenous sediments in the Cadomian orogenic belt of end-Proterozoic age. In the Armorican Massif (NW France), the graphitic cherts are of two types: massive cherts essentially composed of quartz (SiO2 > 96%) and with rare sedimentary structures; laminated cherts containing up to 3·4% Al2O3 and 92–98% SiO2. Sedimentary structures observed in the laminated cherts are indicative of a restricted hypersaline tidal or supratidal environment. The origins of both types of chert are to be found in the diagenetic processes of silification of terrigenous and mixed terrigenous-evaporitic facies. These processes, which could be mediated by the presence of organic matter, were controlled by the migration of the freshwater/saltwater mixing zone during periods of relative sea-level change. The proposed diagenetic origin for the cherts places a number of constraints on their use in the establishment of stratigraphic correlations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号