首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   175篇
  国内免费   502篇
测绘学   1篇
地球物理   100篇
地质学   1602篇
海洋学   14篇
天文学   1篇
综合类   14篇
自然地理   38篇
  2024年   7篇
  2023年   27篇
  2022年   57篇
  2021年   65篇
  2020年   70篇
  2019年   96篇
  2018年   88篇
  2017年   88篇
  2016年   72篇
  2015年   72篇
  2014年   61篇
  2013年   159篇
  2012年   112篇
  2011年   50篇
  2010年   55篇
  2009年   62篇
  2008年   75篇
  2007年   58篇
  2006年   58篇
  2005年   49篇
  2004年   75篇
  2003年   44篇
  2002年   26篇
  2001年   24篇
  2000年   32篇
  1999年   19篇
  1998年   26篇
  1997年   35篇
  1996年   22篇
  1995年   11篇
  1994年   23篇
  1993年   16篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   7篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1770条查询结果,搜索用时 31 毫秒
981.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   
982.
We present new zircon U–Pb and Hf isotopic as well as whole-rock geochemical data for volcanic rocks from the eastern margin of the Xing’an Massif, Northeast China, in order to further our understanding of the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs. Zircon secondary ion mass spectrometry U–Pb dating indicates that the volcanic rocks formed during the Early–Middle Ordovician (473–463 Ma). Compared with the coeval Moguqi basalts (rare earth element [REE] = 171–183 ppm; εHf(t) = +0.3 to +2.7; TDM1 = 1074–977 Ma), the Duobaoshan andesites exhibit lower overall REE abundances (109–131 ppm) with relatively high heavy REE contents, stronger high-field-strength element depletion, higher εHf(t) values (+13.0 to +14.8), and much younger TDM1 ages (559–484 Ma). This suggests that the primary magma for the andesites was generated by the partial melting of a relatively depleted mantle wedge that was metasomatized by subduction-related fluids. The primary magma for the basalts in the Moguqi area was probably derived from the partial melting of a relatively enriched lithospheric mantle that was also modified by fluids sourced from a subducted slab. These interpretations suggest that the andesites in Duobaoshan formed in a newly accreted island arc setting, whereas the coeval basalts in Moguqi formed along an active continental margin. We therefore attribute the Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif to the northwestward subduction of the Nenjiang–Heihe oceanic plate beneath the Xing’an Massif. Furthermore, considering coeval igneous activity in the southern parts of the Xing’an Massif, we suggest that a magmatic arc existed along the margin of the Xing’an Massif in the early Palaeozoic (490–420 Ma). We conclude that the location of the suture between the Xing’an and Songnen–Zhangguangcai Range massifs runs from Airgin Sum, via south of Xilinhot, to Ulanhot, Moguqi, Nenjiang, and finally Heihe.  相似文献   
983.
Long-lived intra-oceanic arcs of Izu-Bonin-Marianas (IBM)-type are built on thick, granodioritic crust formed in the absence of pre-existing continental crust. International Ocean Discovery Program Expedition 350, Site U1437, explored the IBM rear arc to better understand continental crust formation in arcs. Detailed petrochronological (U–Pb geochronology combined with trace elements, oxygen and hafnium isotopes) characterizations of zircon from Site U1437 were carried out, taking care to exclude potential contaminants by (1) comparison of zircon ages with ship-board palaeomagnetic and biostratigraphic ages and 40Ar/39Ar geochronology, (2) analysing zircon from drill muds for comparison, (3) selectively carrying out in situ analysis in petrographic thin sections, and (4) minimizing potential laboratory contamination through using pristine equipment during mineral separation. The youngest zircon ages in Site U1437 are consistent with 40Ar/39Ar and shipboard ages to a depth of ~1390 m below sea floor (mbsf) where Igneous Unit Ig 1 yielded an 40Ar/39Ar age of 12.9 ± 0.3 Ma (all errors 2σ). One single zircon (age 15.4 ± 1.0 Ma) was recovered from the deepest lithostratigraphic unit drilled, Unit VII (1459.80–1806.5 mbsf). Site U1437 zircon trace element compositions are distinct from those of oceanic and continental arc environments and differ from those generated in thick oceanic crust (Iceland-type) where low-δ18O evolved melts are produced via re-melting of hydrothermally altered mafic rocks. Ti-in-zircon model temperatures are lower than for mid-ocean ridge rocks, in agreement with low zircon saturation temperatures, suggestive of low-temperature, hydrous melt sources. Zircon oxygen (δ18O = 3.3–6.0‰) and hafnium (εHf = + 10–+16) isotopic compositions indicate asthenospheric mantle sources. Trace element and isotopic differences between zircon from Site U1437 rear-arc rocks and the Hadean detrital zircon population suggest that preserved Hadean zircon crystals were probably generated in an environment different from modern oceanic convergent margins underlain by depleted mantle.  相似文献   
984.
A provenance and stratigraphic study of the Neoproterozoic Pontas do Salso Complex (PSC), western portion of the Dom Feliciano Belt (DFB), was conducted with U–Pb zircon geochronological analysis of the metasediments and the host rocks. The U–Pb isotopic data from detrital zircon of the metasediments indicate the source from the latest Middle Tonian to Late Cryogenian (between 897 and 684 Ma) and maximum depositional age of 685 ± 18 Ma in an arc-related basin setting adjacent in the Sao Gabriel Arc. The metasediments of the PSC form an elongated body in the N35°E direction and occur in the central portion of the São Gabriel Terrane (SGT), which is constituted by ophiolitic complexes and arc-related rocks, generated probably during the final consolidation of Rodinia supercontinent, although this question is still open. Low- to medium-K calc-alkaline, metaluminous affinity, and trace-element geochemistry suggest that the chemical composition of the protoliths was generated from metasomatized mantle sources in subduction zones. The PSC is composed of meta-arkoses, with subordinate metaconglomerates and metapelites. The meta-arkoses are disposed in plane-parallel layers, which also internally feature small-scale cross-bedding structures. The matrix has a blastopsammitic, poorly selected, fine to coarse texture, and hexagonal quartz and plagioclase porphyroclasts with superimposed thermal metamorphism. The polymict metaconglomerates are matrix-supported, with 15–55% of clasts of metavolcanic rocks, metasediments, undeformed granites, and quartz veins. The metapelites comprise mainly muscovite phyllites with syn-tectonic garnet and chloritoid porphyroblasts. The PSC represents a sedimentary succession deposited on an arc-related basin formed during the collapse and uplift of the SGT.  相似文献   
985.
安徽铜陵是我国著名的铜—金多金属矿集区,区内广泛出露与成矿作用有着密切关系的中酸性侵入岩,其中,凤凰山岩体是区内出露面积最大的岩体,岩体周围分布着许多重要的铜、金、钼等金属矿床。为了探讨凤凰山岩体的成因及构造意义,本文对该岩体开展了岩石学、锆石U-Pb年代学、岩石地球化学等方面的研究。研究结果表明,该岩体主要由花岗闪长岩和石英二长闪长岩组成,锆石LA-ICP-MS U-Pb年龄分别为140.6~144.7 Ma和142.2~143.4 Ma,反映岩体侵位时代为140.6~144.7 Ma。岩石主要由斜长石、石英、碱性长石组成,其次含角闪石、黑云母,副矿物为磷灰石、锆石等,岩体内部常见闪长质微粒包体。岩石的铝饱和指数A/CNK1.1,Na_2OK_2O,具Ⅰ型花岗岩特征。岩石的轻稀土元素富集而重稀土元素亏损,Eu呈较弱的负异常,富集Rb、Ba、Th、U、K等大离子亲石元素,相对亏损Nb、Ta、P、Ti等高场强元素,反映其源岩可能主要为壳幔混合源,形成岩体的岩浆是由古老地壳部分熔融形成的长英质岩浆与起源于富集地幔的富碱玄武质岩浆混合后形成。  相似文献   
986.
蔡永丰 《地质与勘探》2018,54(5):940-956
中生代时期华南地区发育强烈的几乎同时期的花岗质岩浆作用和成矿作用,为阐明两者的联系,本文以桂东北花山岩体为研究对象,对其进行了详细的矿物化学成分、锆石U-Pb年代学和地球化学分析,并探讨了其成岩成矿作用。分析结果表明,花山岩体黑云母的含铁指数为0.68~0.80,属于铁叶云母,具有低的氧逸度;长石的端员组分主要为Ab,Or和An组分含量较低,斜长石主要为奥长石。年代学测试结果表明花山岩体形成于162 ± 1 Ma,为中侏罗纪晚期,与区域上钨锡成矿时代一致。花山岩体具有高硅富碱、贫CaO、MgO、Sr、Ba等特征,其FeOT/MgO和Ga/Al比值较高,同时富含Sn、Rb、Y、Zr、Nb和REE(除Eu外),表现出与A型花岗岩相似的地球化学特征。综合上述数据资料并结合区域地质资料,表明花山地区花岗岩的侵位时代分为燕山早期和燕山晚期两期次,而不是前人认为的形成于三个期次,其形成可能与岩石圈的拉张减薄有关;本区花岗岩低氧逸度、较高含铁指数及成岩温度等特征均有利于W-Sn矿床的形成,是本区钨锡矿床勘探的重点区域。  相似文献   
987.
小秦岭地区是华北克拉通南缘早前寒武纪基底重要分布区,可见大量构造抬升剥露的基底结晶杂岩带。太华杂岩是小秦岭出露最古老的地质体,对于探讨华北克拉通南缘早期地壳形成和演化及其构造归属等问题具有重要意义。在小秦岭地区,太华杂岩被划分为正片麻岩系和以孔兹岩系为主的表壳岩。利用LA-ICP-MS锆石U-Pb定年方法测得小秦岭地区太华杂岩表壳岩中黑云斜长片麻岩碎屑锆石的源区物质主要形成于2.40~2.11 Ga,经历了两期的古元古代晚期变质事件(~2.04 Ga和~1.91 Ga),限定该套表壳岩的沉积时代介于2.11~1.91 Ga。结合锆石Hf同位素特征,我们认为该表壳岩的碎屑物质可能主要来自中条山的涑水杂岩体及绛县杂岩体、熊耳花岗岩体、小秦岭古元古代花岗岩体等,其初始的源区物质可能为太华杂岩的新太古代正片麻岩系。此外,本研究揭示华北中部造山带可能记录了一个长达约250 Ma(~2.05~1.8 Ga)持续的俯冲-碰撞过程。  相似文献   
988.
South Percy Island is located approximately 50 km off the central Queensland coast and comprises a disrupted ophiolite mass alongside a diverse array of metamorphosed felsic and mafic rocks that record several episodes of magmatism, volcanism and deformation from the Permian to Early Cretaceous. This paper aims to constrain the age, affinity and deformation history of these units, as well as to establish the tectonic significance of the terrane. The trace-element compositions of mafic and felsic meta-igneous rocks record a change from MORB-like prior to ca 277 Ma to subduction-related by ca 258 Ma. Overprinting relationships between intrusive phases and deformation features reveal a relative chronology for the tectonothermal evolution of the area, while U–Pb and 40Ar/39Ar geochronology provides absolute age constraints. Deformation is localised around a NNE-striking tectonic contact that separates serpentinised ultramafic rocks from metamorphosed pillow lavas. Early formed ductile fabrics associated with the main episode of deformation (D1) preserve bulk flattening strains at greenschist-facies conditions. Emplacement and post-kinematic cooling ages of a pre-D1 quartz-monzonite dyke constrain the age of D1/M1 deformation and metamorphism to the period between ca 258 and ca 248 Ma. Minor brittle deformation (D2) occurred at ca 230 Ma, based on U–Pb dating of a syn-D2 diorite dyke (ca 231 ± 10 Ma) and several ca 230 Ma 40Ar/39Ar cooling ages. The deformation, metamorphism, and supra-subduction zone magmatism preserved on South Percy Island is correlated with the nearby Marlborough Terrane and more broadly with the second pulse of the Hunter–Bowen Orogeny, which affected much of the central and northern parts of eastern Australia in the late Permian and Early Triassic. Our results support previous suggestions that the second pulse of the Hunter–Bowen Orogeny involved coeval thrust systems in both the inboard and outboard parts of the orogen.  相似文献   
989.
The Cariewerloo Basin formed in the Mesoproterozoic following assembly of the Gawler Craton, South Australia, and was filled by arenaceous redbeds of the Pandurra Formation. While previous regional-scale work reveals a basin with similar size and sedimentary fill to the Proterozoic Athabasca and Kombolgie basins that host unconformity-related uranium deposits, few details of the Cariewerloo Basin are known. In this study, stratigraphy, petrography, lithogeochemistry, stable isotope geochemistry and 40Ar/39Ar geochronology are integrated to clarify the depositional history of the Pandurra Formation, and to assess fluid events in the basin that could be linked to the formation of uranium deposits. In the study area, the Pandurra Formation was deposited in two eastward-thickening packages that terminate at faulted basement uplifts, interpreted as half-grabens that formed in a continental rift system as the eastern Gawler Craton underwent extension. Deposition occurred between 1575 Ma (latest Hiltaba Suite age) and ca 1490 Ma, the 40Ar/39Ar age of diagenetic illite in the basal Pandurra. Diagenesis involving fluids having δ18O and δ2H values between –2.1 and 3.6‰, and between –66 and –8‰, respectively, occurred at around 150°C. Protracted diagenesis preferentially occurred in the upper Pandurra Formation based on petrography and Pearce Element Ratios that show complete replacement of detrital lithic and feldspathic grains by diagenetic phyllosilicates, and younger 40Ar/39Ar ages between ca 1330 and 1200 Ma that record fluid events later into basin history. Conversely, the basal Pandurra Formation shows better preservation of detrital grains, and older 40Ar/39Ar ages around 1450 Ma that suggest these strata became closed to fluid flow earlier in basin history. Although, based on O-isotope ratios, fluid–rock interaction did not occur in the Cariewerloo Basin to the same extent as that in the Athabasca or Kombolgie basins, it is possible that a uranium deposit formed where the upper Pandurra Formation was in contact with metasedimentary basement units outside the present basin margins.  相似文献   
990.
尕林格大型矽卡岩型铁多金属矿床位于东昆仑祁漫塔格盆山结合带中部,是祁漫塔格斑岩-矽卡岩成矿带内代表性矿床之一。因其地处盆地覆盖区、缺乏直接定年对象,一直未开展成矿年龄精细测定,制约了矿床成因和形成地球动力学过程的深入认识。本文采用40 Ar-39 Ar测年技术,获得尕林格矿区Ⅱ矿群磁铁矿矿石中金云母的40 Ar-39 Ar坪年龄为(235.8±1.7)Ma,等时线年龄为(234.1±3.7)Ma,反等时线年龄为(234.2±3.5)Ma。3组年龄数据在误差范围内完全一致,样品的坪年龄可以很好地代表尕林格矿床成矿年龄。结合区域成矿年龄数据表明,祁漫塔格成矿带在三叠纪存在大规模成矿作用,与花岗质岩浆活动有密切的成因联系。祁漫塔格带内强烈的岩浆活动和成矿作用是对三叠纪后碰撞伸展构造环境的响应,形成了构造-岩浆-成矿三位一体的时空体系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号