首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地球物理   10篇
地质学   10篇
自然地理   2篇
  2014年   1篇
  2010年   1篇
  2009年   7篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
A new archaeological excavation on the northern slope of Vesuvius has provided invaluable information on the eruptive activity and post-eruptive resedimentation events between the late Roman Empire and 1631. A huge Roman villa, thought to belong to the Emperor Augustus, survived the effects of the 79 a.d. Plinian eruption, but was mainly engulfed in volcaniclastic materials eroded and redeposited immediately after a subsequent eruption or during repose periods. Primary pyroclastic deposits of the 472 a.d. eruption are only few centimeters thick but are overlain by reworked volcaniclastic deposits up to 5 m thick. The resedimented volcaniclastic succession shows distinct sedimentary facies that are interpreted as debris flow deposits, hyperconcentrated flow deposits, and channel-fill deposits. This paper has determined that the aggradation above the roman level is about 9 m in 1,200 years, leading an impressive average rate of 0.75 cm/year.  相似文献   
12.
 The Pebble Creek Formation (previously known as the Bridge River Assemblage) comprises the eruptive products of a 2350 calendar year B.P. eruption of the Mount Meager volcanic complex and two rock avalanche deposits. Volcanic rocks of the Pebble Creek Formation are the youngest known volcanic rocks of this complex. They are dacitic in composition and contain phenocrysts of plagioclase, orthopyroxene, amphibole, biotite and minor oxides in a glassy groundmass. The eruption was episodic, and the formation comprises fallout pumice (Bridge River tephra), pyroclastic flows, lahars and a lava flow. It also includes a unique form of welded block and ash breccia derived from collapsing fronts of the lava flow. This Merapi-type breccia dammed the Lillooet River. Collapse of the dam triggered a flood that flowed down the Lillooet Valley. The flood had an estimated total volume of 109 m3 and inundated the Lillooet Valley to a depth of at least 30 m above the paleo-valley floor 5.5 km downstream of the blockage. Rock avalanches comprising mainly blocks of Plinth Assemblage volcanic rocks (an older formation making up part of the Mount Meager volcanic complex) underlie and overlie the primary volcanic units of the Formation. Both rock avalanches are unrelated to the 2350 B.P. eruption, although the post-eruption avalanche may have its origins in the over-steepened slopes created by the explosive phase of the eruption. Much of the stratigraphic complexity evident in the Pebble Creek Formation results from deposition in a narrow, steep-sided mountain valley containing a major river. Received: 20 January 1998 / Accepted: 29 September 1998  相似文献   
13.
The long-term behaviour of andesite stratovolcanoes is characterised by a repetition of edifice growth phases followed by collapse. This cyclic pattern represents a natural frequency at varying timescales in the growth dynamics of stratovolcanoes worldwide. Around the > 130 ka Mt. Taranaki (Egmont volcano), New Zealand, coastal–cliff successions at 20–40 km distance comprise repeating packages of lithologically and sedimentologically distinctive mass-flow deposits. Varying depositional mechanisms and source properties of these units record growth and collapse cycles of the central edifice. These are used to construct a model for cyclic volcaniclastic sedimentation in the surrounds of stratovolcanoes. During edifice-construction phases, thick packages of tabular, predominantly monolithologic, hyperconcentrated-flow and debris-flow deposits accumulate with intercalated tephra beds. The mass-flow units commonly contain large proportions of fresh pumice or juvenile-lithic andesite. Intervals of quiescence separating eruptive periods are characterised by landscape re-adjustment, accompanied by deposition of fluvial and aeolian sediments, along with steady accretion of medial ash. In contrast, brief episodes of destruction are marked by wide-spread, distinctively clay-rich, polylithologic debris-avalanche deposits and related marginal debris flow units. The growth stages can be terminated by an eruption-triggered sector collapse, or by external forces once the edifice exceeds a critical stable height or profile (dependent on eruptive style and local geo-tectonic conditions). Once the edifice becomes metastable, regional tectonic earthquakes or shallow-level intrusion events are likely triggers for collapse. Although the resulting debris avalanches represent the greatest individual hazard from such andesite stratovolcanoes, their frequency is relatively low compared with other types of mass-flows generated during edifice-growth phases. Accurate forecasts of future hazard from mass-flow events are therefore dependent on recognition of both the frequency of a stratovolcano's growth cycle and its current position in that cycle.  相似文献   
14.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   
15.
Large-scale ignimbrite eruptions from rhyolitic caldera volcanoes can trigger geologically instantaneous changes in sedimentary systems over huge areas by either burying existing environments or overloading them with vast quantities of unconsolidated particulate material. The post-eruption readjustment of the landscape to such perturbations is one of the most dramatic processes in physical sedimentology, exemplified here by the 1.8 ka Taupo eruption in the central North Island of New Zealand. This eruption generated voluminous fall deposits, then climaxed with emplacement of a c. 30 km3 non-welded ignimbrite over a near-circular area of c. 20 000 km2. Approximately 90% of the area, but < 50% of the ignimbrite volume, is represented by a landscape-mantling unit that covered the pre-eruption topography to a depth varying from c. 10 m in proximal areas to less than 15–30 cm distally. The remainder of the ignimbrite deposit is represented by landscape-modifying material that ponded in valley bottoms and depressions to thicknesses of up to 70 m, with no systematic variation in thickness with distance from source.The headwaters of many of the North Island's largest rivers were impacted by both the primary pyroclastic fall and flow material. Large-scale post-eruption remobilisation of this material, coupled with the re-establishment of fluvial systems, occurred in a distinct sequence as recorded by the evolution of sedimentary facies in different sub-environments. Following an initial period dominated by mass flows, re-establishment of fluvial systems began with the headward erosion of box canyons through the ponded ignimbrite deposits, a process often associated with the break-out of temporary lakes. Aggradational streams developed in these channels rapidly evolved from shallow, ephemeral, sediment-laden outbursts associated with flash flood events to deeper, permanent braided rivers, before declining sediment yields led to retrenchment of single thread rivers and a return to pre-eruption gradients and bedloads years to decades later. Typically the modern profile of many streams and rivers follow closely their pre-eruption profiles, and incision and erosion is overwhelmingly confined to the deposits of the eruption itself.Although the general remobilisation pattern is similar for all impacted river systems, detailed studies of the Waikato, Rangitaiki, Mohaka, Ngaruroro and Whanganui catchments show that the relative timing and scale of each eruption response phase differs between each catchment. These reflect differences in catchment physiography and hydrology, and the volume and type of pyroclastic material deposited in each. Ultimately, the landscape response reflects the relative spatial distributions of, and the volumetric ratios between, the volumes of pyroclastic debris, water, and accommodation space in the basin (cf. Kataoka and Manville, this volume).  相似文献   
16.
The Llangorse volcanic field is located in northwest British Columbia, Canada, and comprises erosional remnants of Miocene to Holocene volcanic edifices, lava flows or dykes. The focus of this study is a single overthickened, 100-m-thick-valley-filling lava flow that is Middle-Pleistocene in age and located immediately south of Llangorse Mountain. The lava flow is basanitic in composition and contains mantle-derived peridotite xenoliths. The lava directly overlies a sequence of poorly sorted, crudely bedded volcaniclastic debris-flow sediments. The debris flow deposits contain a diverse suite of clast types, including angular clasts of basanite lava, blocks of peridotite coated by basanite, and rounded boulders of granodiorite. Many of the basanite clasts have been palagonitized. The presence and abundance of clasts of vesicular to scoriaceous, palagonitized basanite and peridotite suggest that the debris flows are syngenetic to the overlying lava flow and sampled the same volcanic vent during the early stages of eruption. They may represent lahars or outburst floods related to melting of a snow pack or ice cap during the eruption. The debris flows were water-saturated when deposited. The rapid subsequent emplacement of a thick basanite flow over the sediments heated pore fluids to at least 80–100°C causing in-situ palagonitization of glassy basanite clasts within the sediments. The over-thickened nature of the Llangorse Mountain lavas suggests ponding of the lava against a down-stream barrier. The distribution of similar-aged glaciovolcanic features in the cordillera suggests the possibility that the barrier was a lower-elevation, valley-wide ice-sheet.  相似文献   
17.
Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.  相似文献   
18.
Lahars are water-sediment mass flows from a volcanic source. They can be triggered by a variety of mechanisms and span a continuum of flow rheology and hydraulic properties, even within the same event. Lahars are extremely powerful landscaping agents and represent a considerable hazard potential. However, this highly dynamic character and a lack of direct measurements has made modelling lahars difficult. This study therefore applies a fluid dynamics model; Delft3D, to analyse the 18th March 2007 dam break lahar at Mount Ruapehu, New Zealand. The modelled lahar routed through the Whangaehu gorge in ~30 min, crossed the Whangaehu fan in ~60 min, and then over a further 3 h travelled an additional ~22 km distance along the Whangaehu River to the Tangiwai bridge. The modelled mean frontal velocity was 6.5 m s−1 along the gorge although peak velocity reached up to 19.6 m s−1. The modelled lahar flow front progressively slowed across the fan but along the River it accelerated from 2.1–3.3 m s−1. Calculated peak velocity along the River was <4.5 m s−1. These results generally compare well with gauged records, with historical records, and with other modelling approaches. However, discrepancies in frontal velocity and time to peak stage arise due to (1) specifying roughness, which arises from slope variations between adjacent computational nodes, and which is stage-dependant, and (2) due to rapid topographic changes that produce frequent hydraulic jumps, which are inadequately accommodated in the numerical scheme. The overall pattern of discharge attenuation, and of relationships between topographic and hydraulic variables, is similar to that calculated for lahars on other volcanoes. This modelling method could be applied at other similar sites where a likely source hydrograph and high-resolution topographic data are available. These results have important implications for hazard management at Ruapehu and for examining geomorphic and sedimentary impacts of this lahar.  相似文献   
19.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   
20.
 In contrast to most twentieth-century eruptions of Kelud volcano (eastern Java), the 10 February 1990 plinian eruption was not accompanied by lake-outburst lahars. However, at least 33 post-eruption lahars occurred between 15 February and 28 March 1990. They swept down 11 drainage systems and travelled as far as 24 km at an estimated mean peak velocity in the range of 4–11 m s–1. The deposits (volume ≥30 000 000 m3) were approximately 7 m thick 2 km from vent, and 3 m thick 10 km from vent, on the volcaniclastic apron surrounding the volcano. Subtle but significant sedimentological differences in the deposits relate to four flow types: (a) Early, massive deposits are coarse, poorly sorted, slightly cohesive, and commonly inversely graded. They are inferred to record hot lahars that incorporated pumice and scoria from pyroclastic-flow deposits, probably by rapid remobilization of hot proximal pyroclastic flow deposits by rainfall runoff. Sedimentary features, such as clasts subparallel to bedding and thick, reversely to ungraded beds, suggest that these flows were laminar. (b) Abundant, very poorly sorted deposits include non-cohesive, clast-supported, inversely graded beds and ungraded, finer-grained, and cohesive matrix-supported beds. These beds display layering and vertical segregation/density stratification, suggesting unsteady properties of pulsing debris flows. They are interpreted as deposited from segments of flow waves at a middle distance downstream that incorporated pre-eruption sediments. Sedimentological evidence suggests unsteady flow properties during progressive aggradation. (c) Fine-grained, poorly sorted and ungraded deposits are interpreted as recording late hyperconcentrated streamflows that formed in the waning stage of an overflow and transformed downcurrent into streamflows. (d) Ungraded, crudely stratified deposits were emplaced by flows transitional between hyperconcentrated flows and streamflows that traveled farther downvalley (as far as 27 km from the vent). At Kelud, the transformation of flow and behavior occurs within only 10 km of the source, at the apex of the alluvial fans. The rapid change of flow behavior is attributed to the low fines content and to the unsteady flow regime, which may be due to: (a) the rapid deposition of bedload, owing to the break in channel gradient close to the vent and to changes in channel cross-section and roughness; and (b) the very low silt+clay content in the non-cohesive deposits. These deposits mix with water to produce streamflows. Received: 27 June 1997 / Accepted: 5 January 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号