首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   18篇
  国内免费   26篇
测绘学   4篇
大气科学   2篇
地球物理   148篇
地质学   63篇
海洋学   7篇
天文学   1篇
综合类   8篇
自然地理   25篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   9篇
  2010年   2篇
  2009年   11篇
  2008年   30篇
  2007年   21篇
  2006年   21篇
  2005年   10篇
  2004年   14篇
  2003年   5篇
  2002年   6篇
  2001年   9篇
  2000年   14篇
  1999年   17篇
  1998年   17篇
  1997年   12篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
  1987年   4篇
排序方式: 共有258条查询结果,搜索用时 78 毫秒
101.
Shear wave splitting parameters represent a useful tool to detail the stress changes occurring in volcanic environments before impending eruptions. In the present paper, we display the parameter estimates obtained through implementation of a semiautomatic algorithm applied to all useful datasets of the following Italian active volcanic areas: Mt. Vesuvius, Campi Flegrei, and Mt. Etna. Most of these datasets have been the object of several studies (Bianco et al., Annali di Geofisica, XXXXIX 2:429–443, 1996, J Volcanol Geotherm Res 82:199–218, 1998a, Geophys Res Lett 25(10):1545–1548, 1998b, Phys Chem Earth 24:977–983, 1999, J Volcanol Geotherm Res 133:229–246, 2004, Geophys J Int 167(2):959–967, 2006; Del Pezzo et al., Bull Seismol Soc Am 94(2):439–452, 2004). Applying the semiautomatic algorithm, we confirmed the results obtained in previous studies, so we do not discuss in much detail each of our findings but give a general overview of the anisotropic features of the investigated Italian volcanoes. In order to make a comparison among the different volcanic areas, we present our results in terms of the main direction of the fast polarization (φ) and percentage of shear wave anisotropy (ξ).  相似文献   
102.
In 2006, a series of block-and-ash flows swept the southwestern and southern flanks of Merapi Volcano, Java, Indonesia. In the K. Gendol valley, near the village of Kaliadem, we conducted a GPR survey on the most distal lobe of the June 14th second block-and-ash flow deposit. For this 100 m-long transect, we used a commercial GPR RAMAC© mounted with 100 MHz antennas. We measured the topography with a synchronized GPS and a laser rangefinder. Back at the laboratory, we processed the dataset with the software REFLEX®. Data of the subsurface reveals a series of layers, separated by strong reflective horizons. These horizons are the manifestation of intercalations of fine materials in between more coarse layers. The architecture of these layers presents progradation, retrogradation and aggradation patterns that we relate to the block-and-ash flow deposition process. Based on these observations we proposed a relative chronology of the deposition and a simple conceptual model of the deposition. The model show that the block-and-ash flow can deposit either long, close to horizontal single layers, or shorter layers that imbricate themselves, following different patterns (progradation, retrogradation or aggradation). Nevertheless we remained cautious, since we only studied a very short portion of the deposit, and similar experiences need to be repeated. Moreover there are reflections in the radargram that we could not identify, and further studies need to be conducted.  相似文献   
103.
Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972–984, 1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1)V 2/3, B = (35 to 40)V 2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does not explicitly consider dynamic behavior, which can be important. Ash-cloud surge impact limits must be extended beyond PF hazard zones and we provide several approaches to do this. The method has been used to supply PF and surge hazard maps in two crises: Merapi 2006; and Montserrat 2006–2007.  相似文献   
104.
Lacustrine sediments were sampled from the inaccessible acidic (pH = 0.43) Nakadake crater lake of Aso Volcano, Japan by a simple method. The sediments contain an extremely high content (74 wt.%) of sulfur, which exits as elemental sulfur, gypsum and anhydrite. The abundant elemental sulfur is likely formed by the reaction of SO2 and H2S gases and by the SO2 disproportionation reaction in magmatic hydrothermal system below the crater lake. Based on the sulfur content of sediments and measurements of elevation change of the crater bottom, the sulfur accumulation rate at the Nakadake crater lake was calculated as 250 tonne/day, which is comparable with the SO2 emission rate (200–600 tonne/day) from the Nakadake crater. The sediments include a small amount (9%) of clear glass shards that are apparently not altered in spite of the high reactivity of hyperacid lake water. This finding suggests that the clear glass shards are fragments of recently emitted magmas from fumaroles on the bottom of the crater lake and the magma emissions continuously occur even in quiescent periods.  相似文献   
105.
长白山天池火山是我国最具潜在喷发可能的活火山,至今尚未建立和提出火山监测预警平台的构建技术。本文分析讨论了国外多个灾害预警系统案例,借鉴国内外成熟思路,得出一套适应长白山天池火山地理和火山监测手段的火山监测预警平台构建技术。研究结果表明,火山监测预警平台可提供海量数据库存储与管理,实时数据传输和实时处理,危险性分级,灾情、灾评信息速报,预警级别发布,信息传播与共享功能。具有为政府应急决策、公众逃生避险、重大工程实施紧急处置提供及时火山预警服务的实际意义。  相似文献   
106.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   
107.
Semeru Volcano is the highest mountain of Java (Indonesia), and a vulcanian explosion occurs every 15 minutes on average, since 1967. Thus a constantly renewed stock of material and the heavy monsoon rainfall [3700 mm yr?1 at 1500 m above sea level (a.s.l.)] provide a perfect setting for the study of lahars and their deposits. Hence, we examined the architecture of lahars' terraces 9·5 km from the summit in the Curah Lengkong Valley. We first used ground penetrating radar (GPR) over vertical exposures of the lahars cut‐bank terraces. This allowed us to better understand transversal radargrams across terraces, which are not visually accessible in the field. Preliminary results from a single radargram are very instructive, since (1) they prove that the lateral architecture does not correspond to that observed from banks only; (2) we could observe the presence of lenses and stratigraphic discontinuities; (3) the setting of the various units can also help reconstruct deposition processes and the chronology of different units. In order to finalize these preliminary results, we however need to perform multiple GPR radargrams and provide a complete set of results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
108.
After the phreatic eruption in 1982–83, volcanic activities at Kusatsu–Shirane volcano had been decreasing and reached a minimum in 1990, had turned to a temporal rise in activity up to 1994 and then decreased again at least up to 1997. During this low-activity period we observed a relatively short (≤ 1 y) cyclic variation in polythionates (PT) in the Yugama lake water. Spectral power density analysis of the PT time-series by an autoregressive (maximum entropy spectral estimation, MESE) method indicates that the major frequency in the PT variations is 1.0 y− 1 and the minor is 2–3 y− 1 (1.0 and 0.3–0.5 y in periodicity, respectively). Annual variations in the lake temperature are ruled out for explaining these periodicities. We attribute these cyclic variations to a cyclic magnification-reduction in meteoric-water injection into a hydrothermal regime where volcanic gases from cooling magma bodies at depth and cooler oxidized groundwater come into contact with each other. This interaction may result in a periodical change in the composition and flux of SO2 and H2S gases being discharged into the lake and forming PT. From a phase deviation (2–3 months) in the cycles between the annual precipitation, including snowmelt, and the PT time-series, we estimated the maximal depth of a hydrothermal reservoir beneath the lake assuming a vertical hydraulic conductivity (5 × 10− 3 cm/s) of the volcanic detritus around the summit hydrothermal system. Chloride in the lake water reached a maximum 1.5 years faster than PT. This is most likely due to a gradual elevation of the potentiometric front of a concentrated sublimnic solution in the hydrothermal reservoir. Variations of dissolved SO2 and H2S in the lake water were not consistent with those of the fumarolic gases on the north flank of the volcano. This fact together with additional observations strongly suggests that these fumaroles may have the same origin but are chemically modified by a subsurface aquifer. The PT monitoring at active crater lakes during a quiescent period can provide insight into the annual expansions and reductions of a volcano-hosted hydrothermal reservoir.  相似文献   
109.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   
110.
Isolated-type tremors having two events with different dominant frequencies are characteristic seismological phenomena observed during the fumarolic activity stage at Aso Volcano. These isolated tremors are called hybrid tremors (HBT) and comprise two parts: an initial part named the “HF-part” with a dominant frequency in the high-frequency region (approximately 10 Hz) and the following part named the “LF-part” with a dominant frequency in the low-frequency region (approximately 2 Hz). The LF-part is observed after the HF-part, and the HBT is accompanied by a long-period tremor (LPT). Hypocenters and source parameters are estimated using seismograms recorded at 64 stations around Nakadake crater. The amplitude distributions of all HF-parts have almost similar trends. Similarly, the amplitude distributions of all LF-parts have almost similar trends. However, the amplitude distributions of HF- and LF-parts are not similar. From these results, we proposed that the hypocenters and source parameters of HF- and LF-parts are not common, but each of them have common hypocenters and source parameters. The hypocenter region of HF-parts was estimated to be just beneath the fumarole region south of the 1st crater: the volume fluctuation is the major source factor. The hypocenter region of LF-parts is estimated to be at a depth of approximately 300 m beneath the first crater: the strike–slip component is the major source parameter. The hypocentral depth of LF-parts is located at the upper end of the crack estimated to be the source of the LPTs. The LPTs and HBTs are observed almost simultaneously. We consider that volcanic fluid is involved in the source mechanisms of both HBT and LPT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号