首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4456篇
  免费   1055篇
  国内免费   1745篇
测绘学   27篇
大气科学   1篇
地球物理   814篇
地质学   5709篇
海洋学   204篇
天文学   5篇
综合类   364篇
自然地理   132篇
  2024年   26篇
  2023年   58篇
  2022年   166篇
  2021年   186篇
  2020年   168篇
  2019年   230篇
  2018年   198篇
  2017年   211篇
  2016年   238篇
  2015年   263篇
  2014年   306篇
  2013年   249篇
  2012年   367篇
  2011年   301篇
  2010年   245篇
  2009年   315篇
  2008年   295篇
  2007年   288篇
  2006年   322篇
  2005年   272篇
  2004年   277篇
  2003年   277篇
  2002年   216篇
  2001年   227篇
  2000年   252篇
  1999年   223篇
  1998年   204篇
  1997年   160篇
  1996年   136篇
  1995年   149篇
  1994年   95篇
  1993年   88篇
  1992年   63篇
  1991年   43篇
  1990年   41篇
  1989年   38篇
  1988年   19篇
  1987年   21篇
  1986年   12篇
  1985年   2篇
  1983年   1篇
  1979年   6篇
  1978年   1篇
  1954年   1篇
排序方式: 共有7256条查询结果,搜索用时 62 毫秒
71.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
72.
Mesozoic brackish-water bivalve faunas in Japan diversified in three steps: at the beginning of the Early Jurassic, Early and Late Cretaceous. The Hettangian Niranohama Fauna in northeastern Honshu represents the establishment of a heterodont-dominated brackish-water fauna that persisted until the early Late Cretaceous. No similar composition is known from the Triassic. The infauna consists mostly of non-siphonate and some short-siphonate heterodonts, while the epifauna is represented by diverse pteriomorphian families. In the Early Cretaceous Tetori Group in central Honshu, the long-siphonate heterodonts Tetoria (Corbiculidae) and the semi-infaunal soft-bottom oyster Crassostrea appeared. The evolutionary diversification of the latter, known as the most important element of modern brackish-water faunas, may thus originate at that time. In the early Late Cretaceous (Cenomanian) of the Goshoura and Mifune Groups in west Kyushu, several euryhaline deep-burrowing heterodont families, such as Veneridae and Tellinidae, further diversified in the brackish and marine environments. The Late Cretaceous is characterized by massive shell biolithic beds in which large Crassostrea species are common, a feature common for Cenozoic brackish-water faunas. The long-term changes in the composition of the brackish-water faunas in Japan represents thus an evolutionary record, irrespective of the severe physiological and environmental conditions imposed on the highly conservative nature of the fauna.  相似文献   
73.
74.
75.
76.
张家口地热资源丰富,通过对区内地热成矿机制,成矿规律的分析认为,以祁吕系为主的多构造体系复合部位控制了本区地下热水的形成与分布,本区地下热水是大气降水经深循环而成,经计算深循环的深度达为2600m,张家口南部地区有很多个热水异常点,是具有远景意义的地热区。  相似文献   
77.
鄱阳盆地构造—沉积特征及其演化史   总被引:3,自引:3,他引:3       下载免费PDF全文
 鄱阳盆地是发育在江南—九岭和怀玉—官帽基底拆离造山带上的白垩-古近纪张扭性断陷盆地,明显受近南北走向的赣江走滑断裂系和前白垩系逆冲断裂系晚期反转的双重因素控制,呈“两坳夹一隆”的区域构造格局。受赣江、进贤—石门街走滑断裂夹持的南昌凹陷,呈近南北向凹凸相间展布格局。进贤—石门街走滑断裂以东地区,“南断北超”型断陷自南而北由北东走向渐转为北北东向展布,其源于晚印支-燕山期北东向逆冲断裂在晚期的反转作用,西缘和北部受赣江断裂系东枝走滑断裂影响明显而发生转向。鄱阳盆地经历了早白垩世晚期(冷水坞组沉积期)拉分盆地、晚白垩世早-中期(周家店组—南雄组沉积早期)走滑张扭断(坳)陷盆地、晚白垩世晚期(南雄组沉积中-晚期)走滑伸展盆地和古近纪坳陷盆地等演化阶段,东南部断陷区(江埠—二甲村凹陷)由于喜马拉雅期的隆升剥蚀而只残存周家店组早期坳陷和周家店组中期—南雄组中期断陷两个发育阶段的沉积。  相似文献   
78.
延边地区中侏罗世和早白垩世火山岩中包含有较多的辉石岩捕虏体和角闪石捕虏晶,前者为普通辉石变种,其化学成分类似于中国东部新生代玄武岩中单斜辉石巨晶的成分,具有岩浆堆积成因特征;后者为韭闪石和镁质绿钠闪石变种,其成分类似于中生代晚期玄武岩中角闪二辉石岩包体里的角闪石和新生代玄武岩中的角闪石巨晶.矿物温压计算结果显示,它们形成深度介于25~37km.延边地区中生代火山岩的(87Sr/86Sr)i值介于0.704 3~0.705 0,εNd(t)值介于2.33~4.71,表明岩浆源区应是一套具有亏损性质的新增生的地幔物质.综合上述结果,可以判定延边地区中生代火山岩的原始岩浆应来源于新增生的壳幔过渡带物质的部分熔融,地壳增生事件的时间为新元古代.  相似文献   
79.
李勇  ALDENSMORE  周荣军  MA  ELLIS 《地质学报》2005,79(5):608-615
龙门山是青藏高原东缘边界山脉,具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元。利用数字高程模式图像和裂变径迹年代测定方法研究和计算龙门山晚新生代剥蚀厚度与剥蚀速率,结果表明:3.6 Ma以来龙门山的剥蚀厚度介于1.91-2.16 km之间,剥蚀速率介于0.53-0.60 mm/a之间。在此基础上,开展了该地区岩石圈的弹性挠曲模拟,结果表明龙门山的隆升机制具有以构造缩短隆升和剥蚀卸载隆升相叠合的特点。3.6 Ma之前,龙门山的隆升与逆冲推覆构造负载有关,以构造缩短驱动的构造隆升为特色;3.6 Ma之后,龙门山的隆升与剥蚀卸载驱动的抬升有关,并以剥蚀卸载隆升为特色,进而提出了龙门山晚新生代以来的隆升机制以剥蚀成山作用为主的认识。  相似文献   
80.
甘肃内蒙古北山地区古生代地壳演化   总被引:56,自引:6,他引:56  
甘肃、内蒙古北山地区从寒武纪初期在前震旦纪统一古陆壳的基础上发生裂解,到石炭纪末洋盆最终闭合形成新的统一大陆,先后经历了两期板块构造体制和两次主要的俯冲-碰撞造山作用.其中,第一期板块构造体制出现在早古生代(O2-S3),沿红柳河-牛圈子-洗肠井一带裂解形成洋盆,晚奥陶世-志留纪发生由南向北俯冲,志留纪末大洋封闭;第二期板块构造体制出现在晚古生代中期(C),随着早石炭世初期红石山-百合山-蓬勃山有限大洋的发育,分割了哈萨克斯坦板块和塔里木板块,石炭纪末结束了板块构造格局,形成了新的统一大陆,自此以后北山地区进入陆内演化.石炭-二叠纪北山地区南部还出现了陆内裂谷、裂陷槽及断陷盆地等一系列扩张机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号