首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   39篇
  国内免费   76篇
测绘学   10篇
大气科学   8篇
地球物理   62篇
地质学   132篇
海洋学   157篇
综合类   6篇
自然地理   38篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   18篇
  2020年   15篇
  2019年   13篇
  2018年   19篇
  2017年   11篇
  2016年   10篇
  2015年   6篇
  2014年   14篇
  2013年   20篇
  2012年   22篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   17篇
  2007年   27篇
  2006年   12篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   14篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
41.
Major, trace and rare earth element contents of Fe- and Al-rich metapelites from the Korda (Yenisey Ridge) and Amar (Kuznetsk Alatau) formations were determined to examine the nature, origin and evolution of their protoliths. Results indicate that these rocks are the redeposited and metamorphosed products of Precambrian kaolinitic weathering crusts, while the geochemical distinctions between the studied metapelites are determined by different weathering conditions in the source area and tectonic settings. The protolith of the Korda Formation metapelites was produced by erosion products of the post-Archean granitoid rocks, which accumulated under humid climate conditions in shallow-water basins along the continental margin. The geochemical characteristics of the deeper primary deposits of the Amar Formation suggest that volcanogenic material of mafic composition derived from an island-arc environment had a major role in supplying the erosion zone. These results agree with lithofacies data and with the geodynamic reconstruction of the evolution of the Yenisey Ridge and Kuznetsk Alatau during the Mesoproterozoic and Neoproterozoic, respectively. It was shown that REEs had limited mobility during contact metamorphism. The coherent mobility of REEs during collisional metamorphism may be attributed both to mineral reactions responsible for modal changes and to local chemical heterogeneity inherited from the initial protolith.  相似文献   
42.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   
43.
基于岭估计的SPOT影像外方位元素的解算方法   总被引:3,自引:0,他引:3  
后方交会法解求 SPOT卫星影像的外方位元素时 ,其法方程系数矩阵经常产生很严重的病态 ,若用最小二乘法估计 ,参数解将明显偏离真值 ,甚至无法解得外方位元素。本文中提出了用最小二乘岭估计的方法解求外方位元素 ,实验证明这是非常有效的。  相似文献   
44.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   
45.
The variability of two modes of Labrador Sea Water (LSW) (upper and deep Labrador Sea Water) and their respective spreading in the interior North Atlantic Ocean are investigated by means of repeated ship surveys carried out along the zonal WOCE line A2/AR19 located at 43–48°N (1993–2007) and along the GOOS line at about 48–51°N (1997–2002). Hydrographic section data are complemented by temperature, salinity, and velocity time series recorded by two moorings. They have been deployed at the western flank of the Mid-Atlantic Ridge (MAR) in the Newfoundland Basin during 1996–2004. The analysis of hydrographic anomalies at various longitudes points to a gradual eastward propagation of LSW-related signals, which happens on time scales of 3–6 years from the formation region towards the MAR. Interactions of the North Atlantic Current (NAC) with the Deep Western Boundary Current (DWBC) close to Flemish Cap point to the NAC being the main distributor of the different types of LSW into the interior of the Newfoundland Basin. Comparisons between the ship data and the mooring records revealed that the mooring sites are located in a region affected by highly variable flow. The mooring time series demonstrate an elevated level of variability with eddy activity and variability associated with the NAC considerably influencing the LSW signals in this region. Hydrographic data taken from Argo profiles from the vicinity of the mooring sites turned out to mimic quite well the temporal evolution captured by the moorings. There is some indication of occasional southward flow in the LSW layer near the MAR. If this can be considered as a hint to an interior LSW-route, it is at least of minor importance in comparison to the DWBC. It acts as an important supplier for the interior North Atlantic, distributing older and recently formed LSW modes southward along the MAR.  相似文献   
46.
Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.  相似文献   
47.
Extracts of the viscera of Haliotis iris (Martyn, 1784) were shown to hydrolyse 2‐hydroxy‐5‐nitrophenyl sulphate at pH 5.5, and the p‐nitrophenyl derivatives of α‐ and β‐D‐galactose, α‐ and β‐D‐mannose, α‐L‐lucose, β‐D‐glucuronic acid, β‐N‐acetyl glucosamine and phosphate at pH 4.0 and 5.5: p‐nitrophenyl‐β‐L‐fucose was not hydrolysed.  相似文献   
48.
Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges, while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events. From 1996 to2003, the Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration(NOAA/PMEL) deployed several hydrophones in the eastern Pacific Ocean and the northern Atlantic Ocean.These hydrophones recorded earthquakes with small magnitudes, providing us with...  相似文献   
49.
南大西洋沉积物中多环芳香化合物的组成特征研究   总被引:1,自引:0,他引:1  
10 samples of sediments obtained from the South Mid-Atlantic Ridge were measured for the abundances and distributions of polycyclic aromatic compounds(PAHs). The total concentrations of PAHs(∑PAHs) ranged from 2.768 to 9.826 μg/g dry sediment. The ∑PAHs was higher in sample 22V-TVG10 and sample 26V-TVG05 which were close to hydrothermal fields, with the lowest value in sample 22V-TVG14 which was farthest from hydrothermal fields, suggesting a probable hydrothermal origin of ∑PAHs of samples. Approximately nine kinds of PAHs were identified, and low molecular mass tricyclic and tetracyclic aromatic compounds were predominant in the samples. The concentrations of fluoranthene which were typical as hydrothermal alteration compounds were the highest among PAHs with dry weight between 0.913–3.157 μg/g. The phenanthrene homologue was most abundant in the samples, and the ratios between parent phenanthrene and methylphenanthrene which probably reflected the degree of hydrothermal alteration ranged from 0.097 to 1.602. The sample 22V-TVG10 possessing a maximum ratio value showed the intense influence of the hydrothermal alteration on this sample, which might further imply that PAHs in sediments were mainly derived from the hydrothermal alteration.  相似文献   
50.
The Malay Basin is located offshore West Malaysia in the South China Sea, within north central region of 1st order Sunda Block. The basin developed partly as a result of tectonic collisions and strike-slip shear of the Southeast Asia continental slabs, as the Indian Plate collided into Eurasia, and subsequent extrusion of lithospheric blocks towards Indochina. The Sunda Block epicontinental earliest rift margins were manifested by the Palaeogene W–E rift valleys, which formed during NW–SE sinistral shear of the region. Later Eocene NW–SE dextral shear of (2nd order) Indochina Block against East Malaya Block rifted open a 3rd order Malay Basin. Developed within it is a series of 4th order N–S en-echelon ridges and grabens. The grabens and some ridges, sequentially, host W–E trending 5th order folds of later compressional episodes. The Malay Basin Ridge and Graben Model explains the multi-phased structural deformation which started with, the a) Pre-Rift Palaeo/Mesozoic crystalline/metamorphic Basement, b) Synrift phase during Paleogene, c) Fast Subsidence from Late Oligocene to Middle Miocene, d) Compressional inversion of first Sunda fold during Late Miocene, and e) Basin Sag during Plio-Pleistocene with mild compressional episodes. The subsequent Mio-Pliocene folding history of Malay Basin is connected to the collision of Sunda Block against subducting Indian–Australian Plate. This Neogene Sunda tectonics, to some degree after the cessation of South China Sea spreading, is due to the diachronous collision along the 1st order plate margins between SE Asia and Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号