首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   39篇
  国内免费   76篇
测绘学   10篇
大气科学   8篇
地球物理   62篇
地质学   132篇
海洋学   157篇
综合类   6篇
自然地理   38篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   18篇
  2020年   15篇
  2019年   13篇
  2018年   19篇
  2017年   11篇
  2016年   10篇
  2015年   6篇
  2014年   14篇
  2013年   20篇
  2012年   22篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   17篇
  2007年   27篇
  2006年   12篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   14篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有413条查询结果,搜索用时 93 毫秒
91.
Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00 N and 30°40 N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.  相似文献   
92.
High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.  相似文献   
93.
Digital filters designed using wavelet theory are applied to high resolution deep-towed side-scan sonar data from the median valley walls, crestal mountains, and flanks of the Mid-Atlantic Ridge at 29°10 N. With proper tuning, the digital filters are able to identify the location, orientation, length, and width of highly reflective linear features in sonar images. These features are presumed to represent the acoustic backscatter from axis-facing normal faults. The fault locations obtained from the digital filters are well correlated with visual geologic interpretation of the images. The side-scan sonar images are also compared with swath bathymetry from the same area. The digitally filtered bathymetry images contain nine of the eleven faults identified by eye in the detailed geologic interpretation of the side-scan data. Faults with widths (measured perpendicular to their strike) of less than about 150 m are missed in the bathymetry analysis due to the coarser resolution of these data. This digital image processing technique demonstrates the potential of wavelet-based analysis to reduce subjectivity and labor involved in mapping and analyzing topographic features in side-scan sonar and bathymetric image data.  相似文献   
94.
Based on a new quantitative analysis of sidescan sonar data combined with coring, we propose a revised model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used to produce a synthetic and objective map of recent mud flows covering a 640 × 700 km2 area, which represents more than half of the entire Mediterranean Ridge mud belt. We identify 215 mud flows, extruded during the last 37,000–60,000 years. This time period corresponds to the limit of penetration of the sonar, that we evaluate through geoacoustic modeling of the backscattered signal returned by the mud breccia-hemipelagites contact, and calibrate by coring. We show that during this period, at least 96% of the mud volume has been extruded at the Mediterranean Ridge-Hellenic backstop contact, the remaining being scattered over the prism. We suggest that the source is a Messinian (5–6 Ma) mud reservoir that remained close to the backstop contact, at variance with the classical transport-through-the-wedge model. A revised mud budget indicates that steady-state input is not needed. We propose that the source layer was deposited in deep and narrow pre-Messinian basins, sealed by Messinian evaporites, and finally inverted in post-Messinian times. Onset of motion of the Anatolia-Aegea microplate in the Pliocene resulted in change from slow to fast convergence, triggering shear partitioning at the edges of the backstop and basin inversion. Mud volcanism initiation is probably coeval with the latest events of this kinematic re-organization, i.e. opening of the Corinth Gulf and activation of the Kephalonia fault around 1–2 Ma.  相似文献   
95.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   
96.
Seasonal water storage in high-elevation alpine catchments are critical sources of water for mountainous regions like the western U.S. The spatial distribution of snow in these topographically complex catchments is primarily governed by orography, solar radiation, and wind redistribution. While the effect of solar shading is relatively consistent from year-to-year, the redistribution of snow due to wind is more variable – capable of producing snowpacks that have varying degrees of uniformity across these hydrologically-important catchments. A reasonable hypothesis is that a warmer climate will cause snowfall to become more dense (i.e. wetter and heavier), possibly leading to less wind redistribution and thus produce a more uniformly distributed snowpack across the landscape. In this study, we investigate the role of increasingly uniform spatial snowpack distributions on streamflow generation in the Green Lakes Valley Niwot Ridge Long Term Ecological Research station, within the headwaters of the Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation experiments driven by reconstructed snowpacks spanning 2001–2014 show that more a more uniform spatial snowpack distribution leads to an earlier melt-out of 31 days on average and tends to produce less total streamflow, with maximum decreases as large as 7.5%. Isolating the role of snowpack heterogeneity from melt-season precipitation, we find that snowpack uniformity reduces total streamflow by as much as 13.2%. Reductions in streamflow are largely explained by greater exposure to solar radiation in the uniformly distributed case relative to a more heterogeneous snowpack, with this exposure driving shifts towards earlier snowmelt and changes in soil water storage. Overall, we find that the runoff efficiency from shallower snowpacks is more sensitive to the effects of uniformity than deeper snowpacks, which has potential implications for a warming climate where shallower snowpacks and enhanced sensitivities may be present.  相似文献   
97.
门捷列夫洋脊南部的粘土矿物沉积具有明确的物源,为追踪该区沉积环境的演变提供了良好的条件。末次间冰期以来,ARC7-E23孔中的粘土矿物记录表现出了非常显著的变化。结合沉积物粒度的端元组份和冰阀碎屑沉积,粘土矿物的变化模式表明,东西伯利亚冰盖(ESIS)的规模可能是控制细颗粒沉积的主要因素。在氧同位素2期(MIS2)和4期(MIS4),门捷列夫洋脊南部可能被ESIS所覆盖,几乎阻挡了所有来自加拿大和拉夫贴夫海陆架的沉积物,但允许大量来自东西伯利亚海陆架的细粒沉积物输入。只有当ESIS消融后,波弗特环流和越极流的相对强度以及搬运作用才成为了控制远源沉积物输入的主要因素。MIS3期的气候条件似乎最适合远源沉积物的输入,不仅提高了表层环流的流通性,也提供了足够多的搬运介质。  相似文献   
98.
花东海盆位于欧亚板块与菲律宾海板块交汇处,是现今西太平洋俯冲体系中唯一遗留的早白垩纪洋盆,是研究西太平洋俯冲构造演化与动力学机制的一个关键区域.前期研究发现,关于花东海盆的基础科学问题迫切需要解决:花东海盆的性质、年龄及形成演化历史如何?南北走向的加瓜海脊是花东海盆的东部边界吗?其隆升机制和构造属性如何?花东海盆的西部边界是马尼拉俯冲带吗?其各构造单元流体作用及其与花东海盆的构造关系如何?为了解决上述科学问题,在花东海盆开展主动源与被动源的综合地球物理探测和地质采样是非常必要的.一方面,可以采用纵/横波联合反演方法获取花东海盆及其东/西边界的深达地幔的精细速度结构,为构建西太平洋俯冲构造体系跨圈层的构造演化模式提供重要的地质地球物理证据,另一方面,为中国未来在花东海盆大洋钻探计划提供重要的基础数据.   相似文献   
99.
A 3-D density model for the Cretan and Libyan Seas and Crete was developed by gravity modelling constrained by five 2-D seismic lines. Velocity values of these cross-sections were used to obtain the initial densities using the Nafe–Drake and Birch empirical functions for the sediments, the crust and the upper mantle. The crust outside the Cretan Arc is 18 to 24 km thick, including 10 to 14 km thick sediments. The crust below central Crete at its thickest section, has values between 32 and 34 km, consisting of continental crust of the Aegean microplate, which is thickened by the subducted oceanic plate below the Cretan Arc. The oceanic lithosphere is decoupled from the continental along a NW–SE striking front between eastern Crete and the Island of Kythera south of Peloponnese. It plunges steeply below the southern Aegean Sea and is probably associated with the present volcanic activity of the southern Aegean Sea in agreement with published seismological observations of intermediate seismicity. Low density and velocity upper mantle below the Cretan Sea with ρ  3.25 × 103 kg/m3 and Vp velocity of compressional waves around 7.7 km/s, which are also in agreement with observed high heat flow density values, point out at the mobilization of the upper mantle material here. Outside the Hellenic Arc the upper mantle density and velocity are ρ ≥ 3.32 × 103 kg/m3 and Vp = 8.0 km/s, respectively. The crust below the Cretan Sea is thin continental of 15 to 20 km thickness, including 3 to 4 km of sediments. Thick accumulations of sediments, located to the SSW and SSE of Crete, are separated by a block of continental crust extended for more than 100 km south of Central Crete. These deep sedimentary basins are located on the oceanic crust backstopped by the continental crust of the Aegean microplate. The stretched continental margin of Africa, north of Cyrenaica, and the abruptly terminated continental Aegean microplate south of Crete are separated by oceanic lithosphere of only 60 to 80 km width at their closest proximity. To the east and west, the areas are floored by oceanic lithosphere, which rapidly widens towards the Herodotus Abyssal plain and the deep Ionian Basin of the central Mediterranean Sea. Crustal shortening between the continental margins of the Aegean microplate and Cyrenaica of North Africa influence the deformation of the sediments of the Mediterranean Ridge that has been divided in an internal and external zone. The continental margin of Cyrenaica extends for more than 80 km to the north of the African coast in form of a huge ramp, while that of the Aegean microplate is abruptly truncated by very steep fractures towards the Mediterranean Ridge. Changes in the deformation style of the sediments express differences of the tectonic processes that control them. That is, subduction to the northeast and crustal subsidence to the south of Crete. Strike-slip movement between Crete and Libya is required by seismological observations.  相似文献   
100.
哈萨克斯坦是世界最大的内陆国家,拥有典型的大陆性气候和多样的地理环境及生态系统,同时哈萨克斯坦的自然环境和人类社会对于气候变化这一全球性问题是敏感的、脆弱的,需要运用科学的研究方法应对气候变化的挑战。通常,区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。近年来,大量验证统计降尺度方法在各个地区能力的研究见诸文献,然而在哈萨克斯坦地区验证统计降尺度方法的研究非常少见。本文使用了岭回归的方法对哈萨克斯坦地区11个气象站点1960~2009年的月平均气温进行了统计降尺度研究。结果显示,使用前30年数据和岭回归模型建立大尺度预报因子和观测资料的统计关系可以较好地预测后20年的月平均气温,预测能力在各站各月均有不同程度的差异,地形复杂的站点预测效果较差,夏季预测结果好于冬季;此外,将哈萨克斯坦地区平均来看则与观测数据相吻合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号