首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   11篇
  国内免费   16篇
测绘学   4篇
大气科学   14篇
地球物理   73篇
地质学   102篇
海洋学   13篇
天文学   2篇
综合类   10篇
自然地理   34篇
  2022年   4篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   18篇
  2010年   3篇
  2009年   19篇
  2008年   18篇
  2007年   23篇
  2006年   8篇
  2005年   15篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
71.
This study presents major- and trace-element chemistry of plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens volcano. Despite the considerable variation in textures and composition of plagioclase phenocrysts, distinct segments have been cross-correlated between crystals. The variation of Sr and Ba concentration in the melt, as calculated from the concentration in the phenocrysts using partition coefficients, suggests the cores and rims crystallised from compositionally different melts offset by the plagioclase crystallisation vector. In both of these melts Sr and Ba are correlated despite the abundance of plagioclase in the 1980 dacites. We propose that rapid crystallisation of plagioclase upon magma ascent caused a shift in melt composition towards lower Sr and higher Ba, as documented in the rims of the phenocrysts. Although the cores of the phenocrysts crystallised at relatively shallow depths, they preserve the Sr and Ba of the deep-seated melts as they ascended from a deeper region. Further magma ascent resulted in microlite nucleation, which is responsible for a similar shift to even lower Sr concentration as observed in the groundmass of post-18 May 1980 samples. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
72.
Mount Isa is a major Australian and world Pb‐Zn‐Ag mineral province. The wide varieties of mineralization in the province are believed to be closely related to the geodynamic processes of Isan Orogeny, which occurred between ca 1500 and 1620 Ma. In order to understand the geodynamic processes associated with the Isan Orogeny and the giant mineralization systems in the Mount Isa district, a series of numerical models has been constructed to simulate coupled mechanical–hydrological processes, using Fast Lagrangian Analysis of Continua (FLAC), a finite difference computer code. The numerical modeling results have demonstrated that the most probable far‐field stress orientation during the Isan Orogeny is the asymmetrical E–W shortening, which led to greater easternward tectonic movement at the west boundary of the district in comparison with westward movement at the east boundary. During the initial and early stage of the Isan Orogeny, the mechanical and hydrological conditions in the Leichardt Fault Trough of the West Fold Belt are much more favorable for fluid accumulation and mineralization than in the East Fold Belt. The Mount Isan fault zone developed as a high dilation shear zone where the fluids were focused. As the asymmetrical shortening progressed, shortening deformation and shear strain localization became intensified in the eastern part of the orogenic district. The eastern region therefore became a more favorable locality for hydrothermal mineralization. This structural development feature seems to explain why mineralization in the East Fold Belt is generally later than in the West Fold Belt. Fluid production from the Williams–Naraku granites could result in fluid over‐pressuring, and this probably contributed to the extensive brecciation and related mineralization in the East Fold Belt.  相似文献   
73.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.  相似文献   
74.
Data for major, minor and trace elements in groundwaters from Mt. Etna volcano collected in 1994, 1995 and 1997 were analyzed using Cluster Analysis (CA). Two groups of sampling sites were identified (named clusters A and B), mainly on the basis of their different salinity and content of dissolved CO2. The highest levels of both of these parameters were observed in the sites of cluster A, located in the lower south-western and central eastern flanks of the volcano. For both of the statistical groups CA was repeated, taking into account the mean values of each parameter in time, and the results allowed us to recognize four distinct groups of parameters for each group of sites on the basis of their temporal patterns. Four different types of temporal patterns were recognized: concave, convex, increasing, decreasing. The observed changes were basically interpreted as a result of the different response of dissolved chemical elements to changes in the aqueous environment and/or in their solubility/mobility in water due to different rates of input of magmatic gases to Etna’s aquifers. The main changes occurred in 1995, when Etna’s volcanic activity resumed after a two-year period of rest. The temporal changes of the majority of the studied parameters (water temperature, water conductivity, Eh, pH, Al, Mg, B, Ca, Cl, Hg, Mn, Mo, Na, Ni, Se, Si, Sr, Cr Zn and pCO2) were not cluster-dependent, therefore they were not apparently affected by differences in water salinity between the two groups of sampling sites. A limited number of parameters (Ti, K, Li, HCO3, As, Fe, SO42−, Cu and V), however, manifested different behaviors, depending on the cluster of sites to which they belonged, thus suggesting their apparent dependency on water salinity.  相似文献   
75.
The MODVOLC satellite monitoring system has revealed the first recorded eruption of Mount Belinda volcano, on Montagu Island in the remote South Sandwich Islands. Here we present some initial qualitative observations gleaned from a collection of satellite imagery covering the eruption, including MODIS, Landsat 7 ETM+, ASTER, and RADARSAT-1 data. MODVOLC thermal alerts indicate that the eruption started sometime between 12 September and 20 October 2001, with low-intensity subaerial explosive activity from the islands summit peak, Mount Belinda. By January 2002 a small lava flow had been emplaced near the summit, and activity subsequently increased to some of the highest observed levels in August 2002. Observations from passing ships in February and March 2003 provided the first visual confirmation of the eruption. ASTER images obtained in August 2003 show that the eruption at Mount Belinda entered a new phase around this time, with fresh lava effusion into the surrounding icefield. MODIS radiance trends also suggest that the overall activity level increased significantly after July 2003. Thermal anomalies continued to be observed in MODIS imagery in early 2004, indicating a prolonged low-intensity eruption and the likely establishment of a persistent summit lava lake, similar to that observed on neighboring Saunders Island in 2001. Our new observations also indicate that lava lake activity continues on Saunders Island.Editorial responsibility: J. Gilbert  相似文献   
76.
The rheology of layered meta-sedimentary rocks, and their orientation and position relative to major fault systems were the key controls on Proterozoic hydrothermal copper mineralization at Mount Isa, Australia. Compositional layering in the host rock partitioned mechanical behavior and strain, leading to selective permeability generation and the focusing of fluid flow. Shale layers preferentially failed by plastic shearing, whereas meta-siltstones remained elastic or failed in tension depending on magnitude of deformation and fluid pressure. Numerical simulations support the hypothesis that the orientation of layering and the proximity to major fault systems controlled fracturing and permeability increase in the Urquhart shale. The dilating shale provided a pathway for an upward-flowing, reduced basement fluid, from which quartz was precipitated during cooling. During a later event, the reactivation of steep structures provided access to surface derived oxidized metal-bearing brine, causing the precipitation of dolomite followed by chalcopyrite ore in the brecciated silicified shale.  相似文献   
77.
Episodic, large‐volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground‐penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment‐rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet‐like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat‐lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice‐ and charcoal‐rich sand overlie one of the buried surfaces. Organic‐rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time‐correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel‐fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand‐filled dikes and sills indicate liquefaction caused by post‐depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal‐current reworking, which redistributes sediment into large fields of ebb‐ and flood‐oriented bedforms.  相似文献   
78.
 A new data set of Etna lava flows erupted since 1868 has been compiled from eight topographic maps of the volcano published at intervals since then. Volumes of 59 flows or groups of flows were measured from topographic difference maps. Most of these volumes are likely to be considerably more accurate than those published previously. We cut the number of flow volumes down to 25 by selecting those examples for which the volume of an individual eruption could be derived with the highest accuracy. This refined data set was searched for high correlations between flow volume and more directly measurable parameters. Only two parameters showed a correlation coefficient of 70% or greater: planimetric flow area A (70%) and duration of the eruption D (79%). If only short duration (<18 days) flows were used, flow length cubed, L3, had a correlation coefficient of 98%. Using combinations of measured parameters, much more significant correlations with volume were found. Dh had a correlation coefficient of 90% (h is the hydrostatic head of magma above the vent), and  , 92% (where W is mean width and E is the degree of topographic enclosure), and a combination of the two , 97%. These latter formulae were used to derive volumes of all eruptions back to 1868 to compare with those from the complete data set. Values determined from the formulae were, on average, lower by 16% (Dh), 7% (, and 19% . Received: 30 November 1998 / Accepted: 20 June 1999  相似文献   
79.
 Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice.Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle–ductile transition) with small pockets of melt and/or hot fluids at depths of 8–18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity. Received: 10 February 1999 / Accepted: 26 June 1999  相似文献   
80.
利用2006—2010年夏季6~8月CloudSat资料对念青唐古拉峰地区云水分布和云类型特征进行分析,从而为研究高原天气过程与其水循环过程的相互作用提供理论依据。结果表明,云水含量垂直分布结构与云类型有关,而冰川区和非冰川区云类型差异主要为降水云类型不同,其中有冰川覆盖的高山上空降水云以深厚对流云为主,无冰川覆盖的高山降水云类型以雨层云为主。念青唐古拉峰南坡冰川区云水平均含量为0.14 g/m3,非冰川区云水平均含量为0.18 g/m3,一定程度说明来自孟加拉湾的水汽在经过冰川附近时,多会产生降水,反映了冰川对水汽传输的阻碍作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号