首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   53篇
  国内免费   42篇
测绘学   3篇
大气科学   18篇
地球物理   123篇
地质学   513篇
海洋学   64篇
天文学   8篇
综合类   8篇
自然地理   101篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   13篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   17篇
  2015年   17篇
  2014年   33篇
  2013年   51篇
  2012年   35篇
  2011年   30篇
  2010年   20篇
  2009年   38篇
  2008年   56篇
  2007年   49篇
  2006年   56篇
  2005年   49篇
  2004年   56篇
  2003年   35篇
  2002年   23篇
  2001年   28篇
  2000年   23篇
  1999年   20篇
  1998年   20篇
  1997年   11篇
  1996年   12篇
  1995年   17篇
  1994年   15篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1980年   3篇
排序方式: 共有838条查询结果,搜索用时 15 毫秒
41.
42.
Interlayered graphitic and non‐graphitic schists from the Tauern Window, Eastern Alps, record contrasting mechanical behaviour during extensional exhumation. Graphitic schists contain mesoscale extension fractures, pervasive microcracks in garnet, and abundant secondary fluid inclusion planes; all three types of structures are oriented perpendicular to the stretching lineation. Crack spacings in garnet from graphitic samples are tightly clustered around a mean of 180 μm. Non‐graphitic schists have fewer and more randomly oriented microcracks and fluid inclusion planes and maintained strain compatibility via crystal plasticity. The presence or absence of graphite appears to have exerted a fundamental control on rheology during unroofing. Calculations for a model graphitic rock at 500 °C and fO2 = 10?24 MPa show that the equilibrium metamorphic fluid evolves from XCO2 = 0.07 to 0.38 during decompression from 700 to 400 MPa, in agreement with microcrack fluid inclusion data that show a change from XCO2 < 0.1 to 0.45 in graphitic samples over the same pressure interval. This compositional shift results in >60% expansion of the pore fluid during decompression. H2O‐rich fluid in non‐graphitic rocks expands <15% over the same pressure interval. The greater pore fluid expansion in low‐permeability graphitic horizons likely promoted tensile failure during unroofing. These results suggest that microcracking should be an inevitable consequence of decompression in many graphitic schists, whereas rocks that lack graphite are less likely to undergo microcracking. Microseismicity is predicted to be more common in graphitic than non‐graphitic rocks during unroofing of mountain belts.  相似文献   
43.
Basin formation dynamics of the Tertiary Piedmont Basin (TPB) are here investigated by means of cross-section numerical modelling. Previous works hypothesised that basin subsidence occurred due first to extension (Oligocene) and then to subsequent loading due to back-thrusting (Miocene). However, structural evidence shows that the TPB was mainly under contraction from Oligocene until post Pliocene time while extension played a minor role. Furthermore, thermal indicators strongly call for a cold (flexure-induced) mechanism but are strictly inconsistent with a hot (thermally induced) mechanism. Our new modelling shows that the TPB stratigraphic features can be reproduced by flexure of a visco-elastic plate loaded by back-thrusts active in the Western Alps in Oligo-Miocene times. Far-field compression contributed to the TPB subsidence and controlled the basin infill geometry by enhancing basin tilting, forebulge uplift and erosion of the southern margin of the basin. These results suggest that the TPB subsidence is the result of a combination of mechanisms including thrust loading and far-field compressional stresses.  相似文献   
44.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
45.
The structural analysis and the 3D modelling of Stephanian granites of the Pelvoux Massif characterize an emplacement along sinistral NW–SE- and dextral NE–SW-trending shear zones in the Pelvoux and in the Aiguilles Rouges–Mont Blanc Massifs, respectively. This Carboniferous shear system is consistent with a north–south extension direction known in the whole Variscan belt at this time. To cite this article: P. Strzerzynski et al., C. R. Geoscience 337 (2005).  相似文献   
46.
The growth and dissolution behaviour of accessory phases (and especially those of geochronological interest) in metamorphosed pelites depends on, among others, the bulk composition, the prograde metamorphic evolution and the cooling path. Monazite and zircon are arguably the most commonly used geochronometers for dating felsic metamorphic rocks, yet crystal growth mechanisms as a function of rock composition, pressure and temperature are still incompletely understood. Ages of different growth zones in zircon and monazite in a garnet‐bearing anatectic metapelite from the Greater Himalayan Sequence in NW Bhutan were investigated via a combination of thermodynamic modelling, microtextural data and interpretation of trace‐element chemical ‘fingerprint’ indicators in order to link them to the metamorphic stage at which they crystallized. Differences in the trace‐element composition (HREE, Y, EuN/Eu*N) of different phases were used to track the growth/dissolution of major (e.g. plagioclase, garnet) and accessory phases (e.g. monazite, zircon, xenotime, allanite). Taken together, these data constrain multiple pressure–temperature–time (P–T–t) points from low temperature (<550 °C) to upper amphibolite facies (partial melting, >700 °C) conditions. The results suggest that the metapelite experienced a cryptic early metamorphic stage at c. 38 Ma at <550 °C, ≥0.85 GPa during which plagioclase was probably absent. This was followed by a prolonged high‐T, medium‐pressure (~600 °C, 0.55 GPa) evolution at 35–29 Ma during which the garnet grew, and subsequent partial melting at >690 °C and >18 Ma. Our data confirm that both geochronometers can crystallize independently at different times along the same P–T path and that neither monazite nor zircon necessarily provides timing constraints on ‘peak’ metamorphism. Therefore, collecting monazite and zircon ages as well as major and trace‐element data from major and accessory phases in the same sample is essential for reconstructing the most coherent metamorphic P–T–t evolution and thus for robustly constraining the rates and timescales of metamorphic cycles.  相似文献   
47.
Our analyses of microboudinage structures of piemontite grains embedded within six samples of metachert, one collected from an ultrahigh-pressure (UHP) metamorphic unit at Lago di Cignana in Italy of the Western Alps, and the other five from surrounding high-pressure (HP) metamorphic units in Italy and France, have revealed that the structures are all symmetrical in type, and were presumably produced in coaxial strain fields. Stress–strain analyses of the microboudinaged grains revealed significant contrasts in the stress and strain histories of the UHP and HP metamorphic units, with the differential stress recorded by the UHP sample being unequivocally lower than that recorded by the five HP samples. In addition, our analyses showed that the UHP sample underwent stress-relaxation during microboudinage, whereas the five HP samples did not. On the basis of these observations and analyses we discuss the mechanical decoupling of the UHP and HP units that led to different histories in differential stress between the units during exhumation of the Western Alps.  相似文献   
48.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   
49.
《Sedimentology》2018,65(5):1777-1799
Sequences of lake sediments often form long and continuous records that may be sensitive recorders of seismic shaking. A multi‐proxy analysis of Lake Bohinj sediments associated with a well‐constrained chronology was conducted to reconstruct Holocene seismic activity in the Julian Alps (Slovenia). A seismic reflection survey and sedimentological analyses identified 29 homogenite‐type deposits related to mass‐wasting deposits. The most recent homogenites can be linked to historical regional earthquakes (i.e. 1348 ad , 1511 ad and 1690 ad ) with strong epicentral intensity [greater than ‘damaging’ (VIII ) on the Medvedev–Sponheuer–Karnik scale]. The correlation between the historical earthquake data set and the homogenites identified in a core isolated from local stream inputs, allows interpretation of all similar deposits as earthquake related. This work extends the earthquake chronicle of the last 6600 years in this area with a total of 29 events recorded. The early Holocene sedimentary record is disturbed by a seismic event (6617 ± 94 cal yr bp ) that reworked previously deposited sediment and led to a thick sediment deposit identified in the seismic survey. The period between 3500 cal yr bp and 2000 cal yr bp is characterized by a major destabilization in the watershed by human activities that led to increases in erosion and sedimentation rates. This change increased the lake's sensitivity to recording an earthquake (earthquake‐sensitivity threshold index) with the occurrence of 72 turbidite‐type deposits over this period. The high turbidite frequency identified could be the consequence of this change in lake earthquake sensitivity and thus these turbidites could be triggered by earthquake shaking, as other origins are discarded. This study illustrates why it is not acceptable to propose a return period for seismic activity recorded in lake sediment if the sedimentation rate varies significantly.  相似文献   
50.
基于冰川物质平衡和平衡线高度数据,对北极斯瓦尔巴、高亚洲和阿尔卑斯山的冰川物质平衡变化和平衡线高度空间分布特征进行了对比分析,得出以下结论:(1)阿尔卑斯山冰川年均负物质平衡值最大,为-907 mm;斯瓦尔巴为-431 mm;高亚洲最小,为-264 mm。(2)高亚洲和斯瓦尔巴冰川物质平衡年振幅较小,年际变化较小;阿尔卑斯山冰川物质平衡年振幅较大,年际变化较大。斯瓦尔巴冰川物质平衡趋向正平衡,阿尔卑斯山和高亚洲冰川物质平衡趋向负平衡。(3)斯瓦尔巴内陆的冰川平衡线高度高于沿海地区,高亚洲冰川平衡线高度呈纬向地带性、经向地带性和区域地带性的分布规律,阿尔卑斯山的冰川平衡线高度主要受冰川所处海拔的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号