首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   11篇
  国内免费   21篇
大气科学   12篇
地球物理   42篇
地质学   75篇
海洋学   25篇
综合类   3篇
自然地理   8篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   16篇
  2008年   15篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
121.
This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.  相似文献   
122.
The alluvial aquifer of the Alto Guadalquivir River is one of the most important shallow aquifers in Jaén, Spain. It is located in the central-eastern part of the province, and its groundwater resources are used mainly for crop irrigation in an agriculture-dominated area. Hydrochemical and water-quality data obtained through a 2-year sampling (2004–2006) and analysis program indicate that nitrate pollution is a serious problem affecting groundwater due to the use of nitrogen (N)-fertilizers in agriculture. During the study, 231 water samples were collected from wells and springs to determine water chemistry and the extent of nitrate pollution. The concentration of nitrate in groundwater ranged from 1.25 to 320.88 mg/l. Considerable seasonal fluctuations in groundwater quality were observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Guadalquivir River flow regime. The chemical composition of the water is not only influenced by agricultural practices, but also by interaction with the alluvial sediments. The dissolution of evaporites accounts for part of the Na+, K+, Cl, SO4 2−, Mg2+, and Ca2+, but other processes, such as calcite precipitation and dedolomitization, also contribute to groundwater chemistry.  相似文献   
123.
在过去的20多年里,中外对硫酸盐气溶胶做了大量的研究,对它在大气中的排放、含量、光学特征和辐射强迫有了深入的认识;由于硝酸盐气溶胶在大气中平均含量比硫酸盐低很多,因此过去人们对硝酸盐的研究没有给予重视。然而,近年来的研究表明,硝酸盐气溶胶的散射性质在某些波段甚至强于硫酸盐;同时,由于未来对人为硫酸盐前体物的减排,硫酸盐气溶胶排放会大幅度减少,而硝酸盐气溶胶的排放却增长迅速,其在人为气溶胶中所占的比重越来越高,将会导致其在未来造成的辐射强迫有可能超过硫酸盐,使得其在地区范围内和季节尺度上成为重要的辐射强迫和气候影响因子。中国是硝酸盐气溶胶排放量较大的地区,硝酸盐对未来中国气候和气候变化的影响显得越来越重要。因此,就近年来有关硝酸盐气溶胶的排放和在大气中的浓度变化、光学厚度分布特征及其辐射强迫的研究进展做了回顾和介绍,并对其未来的研究做了展望。  相似文献   
124.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   
125.
Seasonal development of Calanus finmarchicus was studied in relation to the physical environment and phytoplankton bloom dynamics in the Norwegian Sea during eight basin-scale surveys from March to August 1995. Our main objective was to gain new knowledge about the life cycle of C. finmarchicus and its adaptation to the physical and biological environment of the Norwegian Sea. Time of spawning, estimated by temperature-dependent back-calculations from the occurrences of copepodite stage 1 (CIs), varied by water mass and occurred mainly during the phytoplankton pre-bloom and bloom periods. Recruitment to CI of the year's first generation (G1) generally occurred during the bloom and late bloom. The seasonal development of C. finmarchicus was progressively delayed from Coastal to Atlantic and to Arctic water, and from south to north within Atlantic and Arctic waters. This delay was partly linked to the phytoplankton bloom development that followed the same pattern, but development of C. finmarchicus also showed an increasing tendency to lag behind the phytoplankton development in colder waters. This may explain why C. finmarchicus are less successful in colder water. The consumption of nitrate was used as proxy for the seasonal history of phytoplankton development to aid interpretation of the lifecycle of C. finmarchicus. This approach allows us to align phytoplankton bloom and copepod development sequences despite temporal and geographical variation in bloom development, which otherwise tend to cause variability in quasi-synoptic and large-scale data. Two generations of C. finmarchicus were found in southern and northern regions of Coastal Water, and in southern Atlantic Water. In northern Atlantic Water and in Arctic Water, one generation was observed.  相似文献   
126.
A direct, spectrophotometric method has been adapted for quantitative determination of nitrate concentrations in seawater. The method is based on nitration of resorcinol in acidified seawater, resulting in a color product. The absorption spectrum obtained for the reaction product shows a maximum absorption at 505 nm, with a molar absorptivity of 1.7 × 104 L mol− 1 cm− 1. This method has a detection limit of 0.5 μM and is linear up to 400 μM for nitrate. The advantage of this method is that all reagents are in aqueous solutions without involving cadmium granules as a heterogeneous reactant, as in conventional methods, and therefore is simple to implement. Application of the resorcinol to seawater analysis demonstrated that the results obtained are in good agreement with the conventional approach involving the reduction of nitrate by cadmium followed by diazotization.  相似文献   
127.
Urbanization represents a dramatic example of human interference with the hydrological cycle. Changes to ground cover affect both the hydrological and geochemical characteristics in a watershed. Ecosystem degradation also occurs in undisturbed watersheds at the “urban fringe” due to regional atmospheric deposition. These urban fringe catchments can also serve as an upstream source of various chemical constituents into downstream (urban) river systems. The current study focuses on the impacts of regional urbanization in the upper Arroyo Seco watershed located on the eastern edge of the Los Angeles basin, where estimates of dry deposition are considered some of the highest in North America. Collected hydrologic, geochemical and atmospheric data were assessed at seasonal time scales to evaluate current hydrochemical dynamics. Stream water chemical composition in the upper Arroyo Seco watershed exhibits significant seasonal variability, particularly for . Almost all study solutes show dilution behavior. However, hydrologically enhanced behavior was observed for with increased concentrations during the wet season. Seasonal stream concentration–discharge relationships were developed using a hyperbolic dilution model. The developed model was then used to predict concentrations for observational gaps in stream water chemical composition, allowing for seasonal and annual mass loadings to be estimated for the downstream urban stream. The hydrological signal in the resultant chemical loads is extremely strong, especially during the wet season. Both observations and model predictions indicate the watershed is a sink for atmospheric nitrate and a source for various cations.  相似文献   
128.
The water quality of rivers in the eastern part of the Humber Basin, north-eastern England is described from a baseflow survey (11–13 August 2006) of a wide range of water quality determinants, and long-term nutrient records of the Environment Agency of England and Wales (EA). The baseflow survey shows that the rivers are oversaturated with respect to dissolved CO2 and calcite. They are sodium, potassium, lithium, boron, chloride, sulphate and fluoride bearing from a combination of atmospheric, within-catchment, agricultural and sewage effluent sources. Nitrate concentrations are uniform for rivers draining permeable bedrock but decrease for clay drainage areas. Soluble reactive phosphorus (SRP) concentrations are variable across the catchments reflecting the importance and variability of point sources and within-river processing. The EA data show annual oscillations for both NO3 and SRP concentrations. Average NO3 concentrations vary between 3.3 and 18.8 mgN/l and concentrations are low during the summer months. Average SRP concentrations vary between 23 and 1959 μg/l. Highest SRP concentrations generally occur when there is effluent input from sewage treatment works and agricultural point sources (e.g. overflow from slurry tanks, farmyard washings). Despite many of the rivers being nutrient rich, they are generally of good biological quality when point source inputs are not important.  相似文献   
129.
硝酸盐矿床及其盐湖形成机理初探   总被引:7,自引:4,他引:3       下载免费PDF全文
分析了硝酸盐的多种可能来源。认为硝酸盐矿床及其盐湖的形成与地质事件关系密切。地质事件所产生的高温、高压和触媒 ,能将 H2 、N2 合成 NH3 ,NH3 氧化成硝酸盐及亚硝酸盐 ,并提供运移通道、储矿场所和积累条件。  相似文献   
130.
稳定同位素技术在地表水硝酸盐污染研究中的应用   总被引:4,自引:1,他引:3  
地表水硝酸盐污染已成为全球面临的主要水环境问题之一,为了有效控制地表水中硝酸盐污染,确定地表水中硝酸盐的来源以及研究其在环境中的迁移转化过程就显得尤为重要.硝酸盐稳定氮(15N)、氧(18O)同位素作为一种有效的示踪技术在识别地表水中硝酸盐的来源及迁移转化过程中已得到了广泛的应用,但是硝酸盐在迁移转化过程中,15N、18O同位素会因为多种因素而发生分馏,同位素值发生变化使得这种技术的应用存在一定的局限性.本文系统总结了不同来源硝酸盐δ15N、δ18O值的组成特征及其影响因素,分析了在不同土地利用类型流域内,利用硝酸盐15N、18O同位素技术开展硝酸盐来源识别、负荷估算和反硝化作用评估的方法和研究进展.基于已有研究成果,提出在未来的研究过程中,一方面应以流域为单元,选择适当的研究方法并结合多种辅助指标研究多因素共同作用下NO3-污染源的δ15N-NO3-和δ18O-NO3-值的变化规律;另一方面应对比流域污染源详细的调查数据,分析现有负荷估算模型存在的不确定性,并构建合适的负荷计算模型;最后,应深入开展同位素在确定流域和河流中反硝化发生的范围、地点和程度方面的研究,特别是掌握河流系统中沉积物-水体中氮的循环过程.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号