首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   19篇
  国内免费   113篇
地球物理   9篇
地质学   231篇
海洋学   7篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   15篇
  2012年   11篇
  2011年   10篇
  2010年   10篇
  2009年   4篇
  2008年   22篇
  2007年   13篇
  2006年   9篇
  2005年   9篇
  2004年   15篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1997年   11篇
  1996年   7篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
11.
The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).  相似文献   
12.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   
13.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   
14.
We present a structural analysis of serpentine-bearing faults and shear zones in the Koniambo Massif, one of the klippes of the Peridotite Nappe of New Caledonia. Three structural levels are recognized. The upper level is characterized by a dense network of fractures. Antigorite and polygonal serpentine form slickenfibers along fault planes with distinct kinematics. As a result, the upper level keeps the record of at least two deformation events, the first associated with the growth of antigorite (WNW-ESE extension), the second with the growth of polygonal serpentine (NW–SE compression). The lower level coincides with the ‘serpentine sole’ of the nappe, which consists of massive tectonic breccias overlying a layer of mylonitic serpentinites. The sole records pervasive tangential shear with top-to-SW kinematics and represents a décollement at the base of the nappe. The intermediate level is characterized by the presence of several meters-thick conjugate shear zones accommodating NE–SW shortening. Like the sole, these shear zones involve polygonal serpentine and magnesite as the main syn-kinematic mineral phases. The shear zones likely root into the basal décollement, either along its roof or, occasionally, around its base. Compared to top-to-SW shearing along the sole, the two deformation events recorded in the upper level are older.The three structural levels correlate well with previously recognized spatial variations in the degree of serpentinization. It is therefore tempting to consider that the intensity of serpentinization played a major role in the way deformation has been distributed across the Peridotite Nappe. However, even the least altered peridotites, in the upper level, contain so much serpentine that, according to theoretical and experimental work, they should be nearly as weak as pure serpentinite. Hence, no strong vertical gradient in strength due to variations in the degree of serpentinization is expected within the exposed part of the nappe. Our proposal is that strain localization along the serpentine sole results from the juxtaposition of the nappe, made of weak serpentinized peridotites, against the strong mafic rocks of its substratum. This interpretation is at odds with the intuitive view that would consider the nappe, made of peridotites, as stronger than its basement.  相似文献   
15.
韦少港  宋扬  唐菊兴 《地质论评》2016,62(S1):194-196
多龙蛇绿混杂岩是班公湖-怒江蛇绿岩带的重要组成部分,位于西藏阿里地区改则县北西约120 km的多龙矿集区内,大地构造位置处于班公湖-怒江缝合带中西段,南羌塘板块南缘。多龙蛇绿混杂岩主要分布在多龙矿区中部及东北部。矿区中部蛇绿岩主要由辉长岩、辉绿(玢)岩、枕状玄武岩、气孔杏仁状玄武岩、玄武质岩屑凝灰岩及硅质岩等组成,东西向延伸约35 km,南北宽3~7 km,出露面积约180 km2;该蛇绿岩残片的组成单元(包括基性岩单元以及硅质岩单元等)多被构造肢解,整体表现为不规则透镜体,以构造岩片的形式断续分布于侏罗系次深海陆棚-盆地斜坡复陆碎屑岩-类复理石建造内的断层带中,构成典型的网结状构造。矿区东北部蛇绿岩主要由含铁斜方辉石橄榄蛇纹岩、玻基玄武岩、碳酸盐化角闪辉长岩、微纹层状硅质岩等组成,该蛇绿混杂岩带沿北西-南东向断裂展布,延伸约12 km,宽1~3 km,出露面积约30 km2;该蛇绿岩残片组成单元(包括超基性岩单元、基性岩单元以及硅质岩单元等)均呈构造岩片的形式产出在三叠系灰岩地层内的断层带中。  相似文献   
16.
陈晨  苏本勋  景揭俊  肖燕  林伟  褚杨  刘霞  白洋 《岩石学报》2018,34(11):3302-3314
在现行板块构造理论的框架下,板块的初始俯冲是岩浆活动和构造运动发生转变的重要过程,亦是理解板块运动的关键节点。在俯冲起始过程中,主要存在四个方面的地质记录,分别为一系列地球化学成分多样的岩浆活动、SSZ型蛇绿岩、变质底板和玻安岩及其对应的铬铁矿床。特提斯造山带作为公认的研究板块构造理论尤其是初始俯冲的关键场所,一直备受地学界的重视。而土耳其南部构造带作为特提斯造山带的重要组成部分,亦是确定亚欧板块和阿拉伯板块之间缝合线存在的重要标志。该南部构造带是研究新特提斯洋俯冲起始的理想场所,上述关于俯冲初始的四个地质记录均保存良好,且有如下方面的重要特点:1)不同地区的镁铁质岩石甚至同一地区的镁铁质岩石具有不同的地球化学特征,从似洋中脊玄武岩,到过渡型岩石类型和玻安质岩石均有发育; 2)大部分蛇绿岩具有完整的序列,各单元及变质底板岩石中普遍发育侵入的基性岩脉,产状多变,是多期岩浆事件的产物; 3)蛇绿岩下部通常发育一套角闪岩相变质底板,且其年龄与蛇绿岩的形成年龄基本一致; 4)蛇绿岩中普遍发育铬铁矿床,以高Cr型为主,部分蛇绿岩中还赋存高Al-高Cr的过渡型铬铁矿,均被认为是幔源岩浆与地幔橄榄岩反应的产物。因而,这些地质体完整记录了新特提斯洋形成-俯冲-消减的演化过程。  相似文献   
17.
Serpentinites in the Eastern Desert of Egypt are the most distinctive lithological unit in the Arabian–Nubian Shield (ANS) ophiolite sequence which associated with major suture zones. Khor Um-Safi (KUS) serpentinites represent dismembered fragments of ophiolitic rocks located in the central Eastern Desert (CED) of Egypt.KUS serpentinites exhibit affinity to the typical metamorphic peridotites with harzburgitic protolith compositions. Their opaque mineral assemblage (pentlandite, heazlewoodite and magnetite) is similar to that observed in oceanic serpentinites and implies serpentinization under highly reducing conditions. They have refractory major element compositions with Al2O3 contents comparable to oceanic and active margin peridotites as well as Pan-African serpentinites. The Cr and TiO2 contents reflect evolution within a supra-subduction zone (SSZ) environment. This implication is confirmed by the Al2O3/SiO2 and MgO/SiO2 ratios which akin to ANS ophiolitic peridotites in fore-arc setting. Their enrichment in compatible trace elements (Cr, Ni and Co) reveals a depleted mantle peridotite protolith.Modelling trace elements indicates that they represent the mantle residues from 15 to 20 % melting of spinel peridotite at oxygen fugacity conditions of the QFM + 1 buffer. This range of melt extraction is consistent with the typical range of SSZ peridotite. Oxygen fugacity estimation suggests evolution under more oxidizing regime similar to modern fore-arc basin system. Moreover, this implication indicates that the KUS mantle represents arc lithosphere interacted with arc melt.  相似文献   
18.
新疆北天山巴音沟蛇绿岩的地质特征   总被引:3,自引:1,他引:3  
巴音沟蛇绿岩虽受强热构造作用肢解,但仍保存有较完整的蛇纹石化超基性岩、状层辉长岩、基性熔岩(下部块状、上部枕状)和放射虫硅质岩的层序组合。岩石化学、地球化学、放射虫等古生物资料表明,它代表一个中石炭世陆缘海盆迅速扩张形成的洋壳和上地幔的残片。其侵位发生在中石炭世未海盆的封闭期间。  相似文献   
19.
Geological controls on Pleistocene glaciation and cirque form in Greece   总被引:2,自引:0,他引:2  
Limestone and ophiolite rocks are common across the eastern Mediterranean and many of the highest mountains are formed in these rock types. In northwest Greece, Pleistocene glacial erosion was much more effective on limestone terrain where pronounced glacial incision and subglacial glacio-karst processes produced locally-complex topography. This enabled Pleistocene glaciers to form on a range of slope orientations in contrast to ophiolite terrains, where glaciers were strongly controlled by aspect. On limestone terrains, the largest ice masses formed on south-facing slopes, whereas in neighbouring higher mountains formed in ophiolite, glaciers were much more restricted and predominantly formed on north- and east-facing slopes.  相似文献   
20.
有关蛇绿岩研究的一些新进展   总被引:3,自引:0,他引:3  
本文扼要介绍有关蛇绿岩的形成环境、成因类型划分及有关上地幔岩变形特征方面的新成果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号