首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   7篇
  国内免费   18篇
地球物理   4篇
地质学   142篇
自然地理   6篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   1篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   18篇
  2005年   9篇
  2004年   9篇
  2003年   12篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
41.
This study reports a new dataset of whole-rock geochemistry, biotite chemistry, in situ zircon UPb geochronology and Hf isotope for a suite of granite and associated pegmatite samples from the Gubrunde region in the Eastern Nigeria Terrane (ENT), Nigeria. The Gubrunde granitic rocks are weakly ferroan, peraluminous and calc-alkalic to alkali-calcic in composition, and show I-type affinity. The zircon UPb geochronology gives an age of ~580 Ma for the rocks, although the presence of inherited zircons with early Pan-African ages of 696 ± 12, 647 ± 7 and 624–613 Ma are evident indicative of a complex history of their source rocks. The Gubrunde granite and the pegmatite yielded similar average Hf crustal model age TDM2 of 1.9 ± 0.1 Ga and εHf(t) values ?6.2 ± 1.2, suggesting that they may have sourced from reworked old crustal rocks with minor contributions from the mantle. The granite and the pegmatite were likely to connect by fractional crystallization under low to moderate pressure (~2.2 to 3.0 kbar) and temperature (~717 °C), and low oxygen fugacity (<ΔNNO ?1.14). The ca. 580 Ma magmatism may have been triggered by delamination of the lithospheric mantle as a consequence of crustal thinning during waning stage of the Pan-African orogeny.  相似文献   
42.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   
43.
藏南北喜马拉雅拉轨岗日带康马岩体西南侧,奥陶系及其底砾岩覆盖于前奥陶系拉轨岗日群(POL)之上,后者被515~485Ma拉轨岗日构造穹隆带花岗岩侵入,沿不整合面又被泛非运动最晚期的基性脉岩侵入。奥陶系与前奥陶系的接触关系为伸展不整合,与喜马拉雅甚至冈底斯带有关剖面完全可以对比。这一不整合面即是冈瓦纳大陆北缘统一变质基底和沉积盖层的分界;冈瓦纳大陆统一变质基底的形成始于震旦纪末的“泛非运动”,其终止时间在喜屿拉雅及以北地区可以延续至寒武纪—奥陶纪之交。表现为区域上不断的伸展—拉张—裂解的构造环境。由此可以认为伸展构造亦是控制统一变质基底与沉积盖层的形成机制之一。  相似文献   
44.
The distribution of epicenters of both historic earthquakes and recent seismic events in southeastern Ghana, compiled from local and teleseismic networks, show strong correlation with the Pan-African structures onshore and indicate an alignment with disruptions on seismic sections offshore. The seismic reflection sections reveal basement structures of the external zone of the Pan-African Dahomeyide orogen and these structures can be traced to offsets of shelf strata and seabottom reflectors, providing direct evidence, for the first time, for neotectonic activity that may be responsible for seismicity in the area. The deep structure of the external zone consists of moderately-dipping reflectors inferred to represent high-strain zones in the variably deformed margin of the West African craton. Taken together, the available data suggest that active tectonics in this intraplate environment may involve inversion of the Pan-African thrust structures but that this activity is apparently not related to reactivation of the nearby Romanche Fracture Zone.  相似文献   
45.
Charnockitic suites in central Dronning Maud Land (DML), Mac.Robertson Land (MRL), and the Bunger Hills area are compositionally varied and probably include both mantle and lower-crustal components. In this paper we present new geological and geochemical data on the DML charnockitic rocks, and compare their geochemistry with that of charnockitic rocks from several other Antarctic high-grade terranes, particularly MRL and the Bunger Hills. These areas have different geological histories and one of the main aims of this study is to investigate possible links between charnockite composition and the tectonic history of their host terranes. Antarctic charnockitic rocks form two distinct compositional groups. 510 Ma DML charnockites are relatively alkalic and ferroan, with high K2O, Zr, Ga, Fe / Mg, and Ga / Al, and very low MgO, characteristic of A-type (alkaline, commonly anorogenic) granitoids. The more mafic DML rocks, at least, were derived by fractionation of a relatively alkaline high-P–Ti ferrogabbro parent magma. Most other early Palaeozoic charnockitic rocks in Antarctica are of similar composition. In contrast, MRL (c. 980 Ma) and Bunger Hills (c. 1170 Ma) charnockites are mainly calc-alkalic or calcic and magnesian, and the associated mafic components are tholeiitic. MRL and Bunger Hills charnockites are late-orogenic, whereas DML charnockites are post-orogenic, and appear to have been emplaced after post-collision extension and decompression. These two mineralogically and geochemically distinct charnockite groups may thus reflect a compositional trend in an evolving orogen, either accretional or collisional, respectively.  相似文献   
46.
The Tin Zebane dyke swarm was emplaced at the end of the Pan-African orogeny along a mega-shear zone separating two contrasting terranes of the Tuareg shield. It is located along the western boundary of the Archaean In Ouzzal rigid terrane, but inside the adjacent Tassendjanet terrane, strongly remobilized at the end of the Precambrian. The Tin Zebane swarm was emplaced during post-collisional sinistral movements along the shear zone at 592.2±5.8 Ma (19WR Rb–Sr isochron). It is a dyke-on-dyke system consisting of dykes and stocks of gabbros and dykes of metaluminous and peralkaline granites. All rock types have Sr and Nd isotopic initial ratios (Sri=0.7028 and Nd=+6.2) typical of a depleted mantle source, similar to the prevalent mantle (PREMA) at that period. No crustal contamination occurred in the genesis of the Tin Zebane swarm. Even the samples showing evidence of fluid interaction (essentially alkali mobility) have the same isotopic signature. The peralkaline granites have peculiar geochemical characteristics that mimic subduction-related granites: this geochemical signature is interpreted in terms of extensive differentiation effects due to late cumulates comprising aegirine, zircon, titanite, allanite and possibly fergusonite, separated from the liquid in the swarm itself due to magmatic flow turbulence. The Tin Zebane dyke swarm is thus of paramount importance for constraining the differentiation of mantle products to generate highly evolved alkaline granites without continental crust participation, in a post-collisional setting.  相似文献   
47.
The Neoproterozoic Ougda magmatic complex occurs within platformal carbonate rocks in the western part of the Pan-African fold belt of the Tuareg shield (NW Africa). It is composed of - 800 Ma old, relatively high P-T (i.e., Grt + Cpx-bearing: P > 5 kbar; T≈900'Q, tholeiitic mafic/ultramafic cumulates and related rocks intruded by intermediate to mafic calcalkali plutons (e.g., Cpx+Hbl-bearing gabbro) and dikes. Apparent contrasts in structural level of crystallization indicate that the calc-alkali rocks are significantly younger than the tholeiites, which temporally correlate with a period of regional extension in this part of Africa. Intrusion of the calc-alkali rocks may have occurred during the formation of an arc after the tholeiitic rocks had been (diapirically?) emplaced within the shelf carbonates, and prior to (> 630 Ma) the Pan-African orogeny. Data reported herein indicate that the Ougda complex records the inception and demise of a Neoproterozoic ocean basin. Similar crustal sections have been described from collisional (e.g., Aleutian islands) and extensional (e.g., Ivreä-Verbano zone) settings, indicating that processes operating in both environments can generate nearly indistinguishable igneous suites; the prevalence of shallow-level calc-alkali rocks in both settings may mask the presence of more mafic, tholeiitic rocks at depth.  相似文献   
48.
The Heimefrontfjella mountains, Western Dronning Maud Land (East Antarctica), are dominantly composed of Grenville-aged (≈ 1.1 Ga) rocks, which were reworked during the Pan -African orogeny at ≈500 Ma. Three discontinuity-bounded Grenville-aged terranes have been recognized namely (from north to south) the Kottas, Sivorg and Vardeklettane terranes. The terranes contain their own characteristic lithological assemblages, although each is made up of an early supracrustal sequence of metavolcanic and/or metasedimentary gneisses, intruded by various (predominantly granitoid) suites. No older basement upon which the protoliths of these older gneisses were deposited has been recognized. In each terrane the older layered gneisses were intruded by various plutonic suites ranging in age from ≈ 1150 to ≈1000 Ma. The Vardeklettane terrane is characterized by abundant charnockites and two-pyroxene granulite facies parageneses in metabasites, whereas the Sivorg and Kottas terranes were metamorphosed to amphibolite facies grade. P-T estimates show that peak metamorphic conditions changed from ≈600°C at 8 kbar in the south, to ≈700 °C at 4 kbar in the northern Sivorg terrane. Regional greenschist retrogression of high-grade assemblages may be of Pan-African age. The Heimefrontfjella terranes were juxtaposed and pervasively deformed during a complex and protracted period of E-W collision orogenesis in a transpressive regime at ≈ 1.1 Ga. This is manifest as early, gently dipping thrust-related shear fabrics (D1), succeeded by the initiation of an important (D2) steep dextral shear zone (Heimefront shear zone, HSZ), during which the early fabrics and structures were steepened and rotated in an anticlockwise sense. The HSZ is a curvilinear structure which changes from a dextral oblique strike-slip lateral ramp in the north to a steep dip-slip frontal ramp in the south, where it forms the boundary between the Sivorg and Vardeklettane terranes. The Pan-African event is manifested as discrete, low- to medium-temperature ductile to brittle shears (D3) and numerous K/Ar cooling ages.  相似文献   
49.
The In Ouzzal terrane (IOT) or In Ouzzal granulite unit (IOGU) is an elongated Palaeoproterozoic block within the Neoproterozoic Pan-African belt of north-west Africa. The granulites derive from Archaean protoliths that include a large volume of metasediments which were deposited on a 3.2-Ga gneissic basement. Near-peak granulite facies conditions between 2.17 and 2 Ga were estimated at P=10 kbar and T rising from 800 to 1000°C. Premetamorphic orthogneisses were intruded at 2.5 Ga, and followed by the emplacement of syn- to late-kinematic charnockites, syenites and carbonatites at around 2 Ga. Cooling of the granulites occurred till 1800 Ma. Shortly after its exhumation coeval with crustal extension and related alkaline magmatism in adjacent areas, the IOT was buried beneath late Palaeoproterozoic and Neoproterozoic cover sequences, and then behaved as a rigid block. Both margins are lithospheric faults, as evidenced by the occurrence of shear-zone-related mafic and felsic plutons. Pan-African tectonothermal events were negligible in the north, but granulites in the south were significantly reworked under lower greenschist facies conditions during the northern motion of the block with respect to both the western and the eastern Pan-African terranes. The Cambrian molasse, associated with widespread alkaline volcanism and subvolcanic granites, is horizontal in the north. The IOT, which was part of a larger continental mass including its counterpart in northern Mali, is interpreted as an exotic terrane which may have docked during Pan-African plate convergence and lateral collision. The unchanged pediplain since c. 1.7 Ga in the north suggests that the IOT is underlain by thick Palaeoproterozoic lithospheric mantle, whereas its southern part is probably allochthonous and overlies Pan-African structural units.  相似文献   
50.
Alkali granitoids (500-550 Ma) representing a prominent Pan-African magmatic event are widely distributed in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Geochemically, they are granitic to syenitic in composition and show an alkaline affinity of A-type granites. They are characterized by high K2O+Na2O (7-13 wt%) and K2O/Na2O (1-2), low to intermediate Mg#, wide ranges of SiO2 (45-78 wt%), Sr (20-6500 ppm) and Ba (40-13000 ppm) and have Nb and Ti depletion in the primitive mantle normalized diagram. The granitoids are subdivided into Group I granites, Group II granites, Lunckeryggen Syenitic Complex and Mefjell Plutonic Complex. The Group I granites have higher Mg#, Sr/Ba, Sr/Y, (La/Yb)N and LREE/HREE, lower A/CNK, SREE and initial 87Sr/87Sr ratios and lack Eu anomalies compared to those with negative Eu anomalies in the Group II granites. The syenitic rocks from the Mefjell Plutonic Complex are higher in alkali, Ga, Zr, Ba, and have lower Mg#, Rb, Sr, Nb, Y, F and LREE/HREE with positive Eu anomaly, whereas the granites from the Mefjell Plutonic Complex have high LREE/HREE ratios with negative Eu anomaly. The Lunckeryggen syenitic rocks have intermediate Mg#, higher K2O, P2O5, TiO2, Fe2O3/FeO, Ba, Sr/Y and LREE/HREE ratios with lack of Eu anomalies and are lower in Al2O3, Ga, Y, Nb and Rb/Sr ratios. Based on chemical characteristics combined with isotopic data, we suggest that the Lunckeryggen syenitic body and Group I granitic bodies may be derived from the mantle-derived hot basic magma by fractional crystallization with minor assimilation. We also suggest that the Group II granites may be derived from assimilation with crustal rocks to varing degrees and then fractional crystallization in higher crustal levels (ACF model). The Mefjell Plutonic Complex seems to be derived from a heterogenetic magma source compared with other granitoids from the Sør Rondane Mountains. The syenitic rocks in the Mefjell Plutonic complex have a unique source (iron-enriched) and have a chemical affinity with the charnockites in Gjelsvikjella and western Mühlig-Hofmannfjella, but not like the Yamato syenites in adjacent areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号