首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   8篇
  国内免费   14篇
大气科学   7篇
地球物理   13篇
地质学   143篇
海洋学   6篇
天文学   2篇
自然地理   70篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   6篇
  2011年   12篇
  2010年   16篇
  2009年   19篇
  2008年   19篇
  2007年   27篇
  2006年   22篇
  2005年   28篇
  2004年   12篇
  2003年   16篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   8篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有241条查询结果,搜索用时 202 毫秒
71.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   
72.
Foy Lake in northwestern Montana provides a record of annual-to-decadal-scale landscape change. Sedimentary charcoal and pollen analyses were used to document fire and vegetation changes over the last 3800 years, which were then compared to similar records from AD 1880 to 2000. The long-term record at Foy Lake suggests shifts between forest and steppe as well as changes in fire regime that are likely the result of climate change. Fire activity (inferred from the frequency of charcoal peaks) averaged 18 fire episodes/1000 years from 3800 to 2125 cal year BP, and increased from 16 fire episodes/1000 years at 2125 cal year BP to 22 episodes/1000 years at 750 cal year BP, a period when the pollen data suggest that steppe vegetation yielded to increasing patches of forest cover. Between 2125 and 750 cal year BP, increased forest cover produced more background charcoal than before and after this period, when vegetation was dominated by steppe. Between 750 and 75 cal year BP steppe has expanded and fire episode frequency averaged 33 episodes/1000 years, increasing to a maximum of 40 episodes/1000 years at ca. 300 cal year BP and then decreasing to present levels. Since AD 1880, the pollen record indicates an increase in shrubs and grasses from AD 1895 to 1960 as a result of vegetation changes associated with timber harvesting and livestock grazing. No fires have been documented in the Foy Lake watershed since AD 1880. Charcoal from the extralocal fires of AD 1910, burning over 4,111,249 ha in Idaho, Montana, and Wyoming, however, is present in Foy Lake. Between AD 1970 and 2000, increased arboreal pollen in the record is consistent with observations that the forest has become more closed. The activities of Euro–Americans have led to a decline in forest cover between AD 1880 and 1970, followed by a recent increase as trees are now growing in areas previously occupied by steppe. Euro–Americans are likely the cause of a reduction in fire activity in watershed since AD 1880.  相似文献   
73.
根据冲积物孢粉恢复冀北山地古植被的意义   总被引:3,自引:0,他引:3  
许清海  阳小兰 《地理科学》1998,18(5):486-492
冲积物是第四纪孢粉分析经常遇到的研究对象。冲积物孢粉研究表明,晚全新世以来,人类活动是影响冀北山地植被演变的主要因素。人类活动对白河流域森林植被的破坏可能较早;对潮河流域森林植被的破坏较晚。  相似文献   
74.
四川西昌螺髻山全新世植被与环境变化   总被引:15,自引:0,他引:15  
通过对沉积物进行孢粉、植物碎屑、硅藻和矿物等的研究和表土的孢粉分析,发现外来孢粉可以远远多于原地沉积的孢粉。并证明该地区在12400年B.P.时,雪线已经高于3660m,从12000年B.P.开始进入全新世。作者在文献[1]中探讨了我国大气透明度系数的空间分布及其主要影响因子。本文则探讨大气透明度系数的时间变化,特别是它的长期变化及其成因。结果发现:火山爆发可使大气透明度系数明显减小;由于人类活动影响,冬季大气透明度系数P_z、P_d有明显的减小趋势,P_2、F_d与用煤量等污染指标有很好的负相关。文中还对大气可降水含量的气候学推算方法进行了探讨。  相似文献   
75.
The response of Central European vegetation to rapid climate change during the late Quaternary period (Eemian to Holocene) is assessed by data from the new pollen record of Füramoos, southwestern Germany. This record represents the longest late Quaternary pollen record north of the Alps as currently known. Its high degree of completeness allows detailed correlations with Greenland ice cores and sea-surface temperature records from the North Atlantic. Our data show that if climate deteriorations were not long or severe enough to extirpate refugia of arboreal taxa north of the Alps such as during marine oxygen isotope stage (MIS) 5 (i.e., Würm Stadial A, Stadial B, and Stadial C), reforestation with the onset of warmer conditions in Central Europe occurred on a centennial scale. If arboreal taxa became completely extinct north of the Alps such as during MIS 4 (i.e., Würm Stadial D), several thousand years were necessary for the reimmigration from refugia situated in regions south of the Alps. Thus, Dansgaard-Oeschger interstades (DOIS) 24 to 20 and 15 to 11 are expressed in Central European pollen records, whereas DOIS 19 to 16 are not recorded due to migration lags.  相似文献   
76.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   
77.
Late Holocene local vegetation succession is reconstructed in twodifferent sites in a small-scale open marsh ecosystem in southwest Turkey.This is done by comparison of the fossil local pollen assemblage zones in twocores with the local pollen data of 40 surface samples from the marsh. Thepollen data are supplemented with sedimentological and archaeological data. Theinsertion of the mean pollen data of the local pollen zones as passive samplesinto the canonical correspondence analysis triplot of the modern samples allowsus to detect modern analogues for the fossil pollen zones. From this numericalcomparative approach it is concluded that the marsh area was relatively dryuntil ca 2500 BP. After 2500 BP the area shifts towards a wet area dominated bySparganium and/or Typha angustifolia. A diversification of the marsh vegetationstarts at ca 2400/2300 BP. The area around one core site seems to have beensituated in an area with slowly flowing source water, whereas the other coresite is likely to have been characterised by damp conditions. The steadilyincreasing dryness of the marsh area starts after ca 680 BP. The drying upappears to be associated with recent agricultural and grazing pressure.  相似文献   
78.
Diatom and chrysophyte cyst-based reconstructions of the dates of spring and autumn lake-mixing enabled us to estimate spring (STanom) and autumn (ATanom) temperature anomalies as well as ice-cover of the last ca. 4,000 years in a lake sediment core (Oberer Landschitzsee, 2,076 m a.s.l.) from the southern slopes of the Austrian Central Alps. The two independently inferred temperature anomalies were significantly correlated. On average, spring and autumn temperatures were lower during the two millennia B.C than during 0–1,300 A.D. Marked spring and autumn temperature minima occurred at about 1,300 and 600 B.C. At about 1,300 A.D, STanom declined again. Spring-temperature anomalies during Roman and Medieval times equaled or slightly exceeded the modern values and paralleled tree-line and glacier fluctuations. The de-coupling of autumn and spring climates, which began during the Medieval period, might indicate changes in major circulation modes. It was assumed that the North-Atlantic influence, triggering winter-rain climate in the Northern Mediterranean, became weaker during Medieval times, resulting in a trend towards warmer autumns and overall more continental climate conditions in the study area. Four pulses of land use, inferred from indicator pollen, occurred during (1) the Early to Late Bronze, (2) the transition from Late Bronze to Early Iron Age (Hallstatt), (3) Late Iron Age (La Tène, Celtic time) to Roman times, and (4) during high to late Medieval times. Climate seemed to be an important, though complex, trigger of Alpine land use.  相似文献   
79.
The Holocene diatom and pollen records from Kelly’s Lough have been analysed to determine the timing and extent of the acidification in this upland lake. The pollen data during the early Holocene reflect the typical vegetation changes that occur in sediments throughout Ireland during this period. The diatom record begins by being dominated by circumneutral and acidophilous benthic forms. Later tychoplanktonic Aulacoseira species begin to expand and dominate indicating increased water transparency following the stabilization of catchment soils. Peatland development in the catchment is evident from approximately 6,450 cal year BP. The main change in the diatom assemblages at this time is the decline of Aulacoseira species and expansion of periphytic species. At around 1,450 cal year BP, loss-on-ignition (LOI) values, Calluna pollen and microscopic charcoal all increase suggesting the initiation of a major phase of peat erosion and an increased inwash of organic matter to the lake. Lake acidity changed significantly although the initial acidification is very subtle as indicated by the diatom-inferred pH record. Changes in the diatom assemblages might be largely the result of increasing erosion and inwash of organic matter from the catchment to the lake leading to reduced water transparency and more acidic conditions. The diatom flora remains relatively stable until the mid-twentieth century when more acidibiontic species increase. These diatom changes result in the reconstructed pH curve showing a moderate recent acidification from pH 5.7 to 5.1. About half of the total change in pH took place by around the late 1960s. The lowest diatom-inferred pH value occurs in the late 1970s, and parallels the peak in SO2 emissions in Ireland. Acidic conditions seem to have prevailed in Kelly’s Lough throughout its entire history and alkalinity has been low or absent for much of the time. However, soil acidification and inwash of organic acids from peatlands are not a sufficiently effective mechanism to explain the low pH levels found today in Kelly’s Lough. The effect of acid deposition on the waters of Kelly’s Lough is clear and it has probably caused these already naturally acid waters to acidify further.  相似文献   
80.
Shallow lakes have been described as existing in two alternative equilibrium states, dominated by either submerged plants or phytoplankton. Causes of, often catastrophic, shifts between these states have been widely debated but may often result from displacement of the dominant community by stochastic influence. In Australian cut-off river meanders (also known as ‘billabongs’), anecdotal and palaeolimnological evidence suggests widespread loss of aquatic macrophytes since European occupation of the region c. post-1800. Our detailed and high-resolution stratigraphic study of a sediment core from Hogan’s Billabong (Murray River, Australia) seeks to identify the causes of the loss of aquatic macrophytes. Little direct evidence of the past extent and composition of submerged macrophyte communities was recovered. Nevertheless, results derived from other sediment proxies, including declines in the abundance of epiphytic diatoms and in plant-associated invertebrates, provide further indirect evidence of macrophyte disappearance. Despite limitations with radiometric dating, the sequence of events in the derived record suggests that a period of high abiotic turbidity, leading to a critical reduction in water transparency and caused by widespread erosion during the late 19th century, is the most likely factor contributing to loss of submerged vegetation from this billabong.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号