首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   189篇
  国内免费   413篇
测绘学   1篇
大气科学   48篇
地球物理   103篇
地质学   1080篇
海洋学   5篇
综合类   24篇
自然地理   125篇
  2024年   8篇
  2023年   19篇
  2022年   46篇
  2021年   42篇
  2020年   59篇
  2019年   72篇
  2018年   50篇
  2017年   67篇
  2016年   56篇
  2015年   55篇
  2014年   55篇
  2013年   128篇
  2012年   66篇
  2011年   53篇
  2010年   43篇
  2009年   45篇
  2008年   44篇
  2007年   67篇
  2006年   54篇
  2005年   45篇
  2004年   46篇
  2003年   38篇
  2002年   35篇
  2001年   32篇
  2000年   31篇
  1999年   32篇
  1998年   22篇
  1997年   20篇
  1996年   10篇
  1995年   7篇
  1994年   4篇
  1993年   9篇
  1992年   8篇
  1991年   8篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有1386条查询结果,搜索用时 187 毫秒
81.
“中央造山带”早古生代缝合带及构造分区概述   总被引:15,自引:2,他引:15  
“中央造山带”是夹持于中国塔里木、华北和扬子克拉通之间的近东西向延展的(局部为北东向和北西向)显生宙造山系统。该造山带中包括了库地-喀拉塔什、红柳沟-肃北-北祁连、南阿尔金-滩间山、昆中、朱阳关-夏馆和商州-丹凤6条早古生代缝合带。被缝合带所围限的前寒武纪地质构造单元包括中阿尔金-祁连-金吉地块、柴达木地块、北秦岭地块和东、西昆仑2个变质地体。南秦岭原为扬子克拉通的北部边缘,但卷入了显生宙造山带,成为中央造山带的一部分。对上述6条早古生代缝合带和6个前寒武纪地质构造单元的特点进行了概略总结,并阐述了各地质构造单元中的构造地层系统和热-构造事件的年代格架。  相似文献   
82.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   
83.
1 Introduction The North China Craton (NCC) is considered to be the oldest and largest cratonic block in China. Recent studies to gain understanding of basement architecture of the NCC has led to its division into the Western and Eastern Blocks, separated by a N-S trending Paleoproterozoic Trans-North China Orogen (TNCO) (Fig. 1; Zhao et al., 1998, 1999a, 2000a, 2001a; Wilde et al., 2002). Although there is now abroad consensus that the final assembly of the NCC was completed by th…  相似文献   
84.
河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因   总被引:16,自引:22,他引:16  
河南栾川冷水北沟铅锌银矿床位于华北克拉通南界栾川断裂北侧。矿床赋存于中-晚元古代浅变质碎屑岩建造中,受断裂控制,矿体呈脉状;矿石主要由金属硫化物,少量石英和碳酸盐组成;围岩蚀变和成矿过程分为4个阶段,以石英- 黄铁矿组合(Ⅰ阶段)、黄铁矿-闪锌矿组合(Ⅱ阶段)、多金属硫化物(Ⅲ阶段)和碳酸盐(Ⅳ阶段)为标志。包裹体研究表明,成矿流体为含 CH_4的碳水体系,盐度为0.22~13.8 wt% NaCl eqv.。从早到晚,流体包裹体均一温度为420℃~340℃(Ⅰ)、370℃~280℃(Ⅱ)、320℃~260℃(Ⅲ)和<260℃(Ⅳ)。Ⅰ、Ⅱ阶段的流体盐度低于8 wt% NaCl eqv.,Ⅲ阶段增高至13.8 wt%NaCl eqv.,甚至偶见子晶。Ⅰ、Ⅱ阶段的流体包裹体均一压力分为两组,即180~200MPa 和70~80MPa,代表着深约8km 的静水与静岩压力系统的共存或交替;Ⅲ阶段只有70~80MPa 一组压力,指示开放环境注入的静水压力体系。Ⅰ、Ⅱ阶段静岩与静水压力系统的交替现象完全吻合于断层阀模式,含 CH_4的 CO_2-H_O 流体的脉动沸腾消耗了流体成矿系统热能,并使盐度不断增高、成矿。该认识可被Ⅱ阶段广泛存在的沸腾流体包裹体组合证明,也与流体包裹体成分类型、矿物共生组合特征、矿石组构的规律演化相一致。以上表明,冷水北沟是一个典型的形成于碰撞造山挤压向伸展转变期的造山型 Pb-Zn-Ag 矿床实例,成矿机理可由碰撞造山成岩成矿与流体作用模型(即 CMF 模式)所解释。  相似文献   
85.
刘养雄 《甘肃地质》2007,16(1):17-22
北祁连西段作为甘肃一个重要的多金属成矿带,随着地质找矿工作不断地加强,日渐重要。根据熬油沟及卡洼沟一带水系沉积物、岩屑和岩石剖面测量结果,对Au、Pt、Pd和Pb、Zn等成矿元素的分布特征和组合关系进行了分析,总结了该处成矿地质背景和地球化学异常特征,指出了找矿方向。  相似文献   
86.
Environmental isotopes have been applied to analyze confined groundwater recharge in the lower reaches of the Heihe River,Inner Mongolia.CFC is regarded as a tracer that determines the date of groundwater,the date being less than 45 a.The confined groundwater within the Gurinai area and Ejin Basin other than the surface water of Heihe River might have originated from precipitation from Qilian Mountain or/and the Tibetan Plateau.The deep confined groundwater overflows into an upper aquifer and emerges into the ground,forming springs and lakes within the low-lying area.The recharge volume is estimated to be around 400 million-cubic meters.  相似文献   
87.
青海同仁县隆务峡地区首次发现镁铁质——超镁铁质岩带   总被引:10,自引:4,他引:10  
在青海省同仁县隆务峡南段的二叠纪地层中首次发现了北西—南东向分布的镁铁质—超镁铁质岩带,命名为隆务峡镁铁质—超镁铁质岩带。该岩带的岩石组合包括纯橄岩、辉石橄榄岩、辉长岩、辉绿岩、枕状玄武岩等。从超镁铁岩—下部堆晶岩—辉绿岩—上部堆晶岩,其稀土元素总量逐渐增加,稀土元素配分型式总体一致,从超镁铁岩的Eu正异常到上部辉长岩的Eu负异常,显示了各岩石间的同源性。根据对其两侧沉积岩中化石的研究,推测该镁铁质—超镁铁质岩带的形成时代为二叠纪。该岩带位于西秦岭造山带与祁连造山带的接舍部,对于揭示秦岭和祁连接合部的大地构造演化有重要意义。  相似文献   
88.
北祁连俯冲-增生杂岩带中低温榴辉岩的地球化学特征   总被引:2,自引:0,他引:2  
北祁连俯冲-增生杂岩带中的低温榴辉岩以透镜体形式产于蓝片岩和多硅白云母片岩中。根据稀土元素、微量元素及Sr-Nd同位素分析研究,可将本区低温榴辉岩分为两类:Ⅰ类榴辉岩以轻重稀土分异不明显和具有Eu正异常为特征;Ⅱ类榴辉岩的轻稀土富集,有轻微的Eu负异常。Sm-Nd同位素研究显示,I类榴辉岩样品的εNd(t)值为2.5~6.9,平均值为4.5;Ⅱ类榴辉岩εNd(t)=-3.3~1.4。这些研究成果表明,Ⅰ类榴辉岩的原岩来源于长期亏损的地幔源区,可能形成于大洋环境;而Ⅱ类榴辉岩的原岩在形成过程中很明显混入了陆壳物质,据此推断其原岩形成于大陆边缘或洋陆过渡环境。  相似文献   
89.
对北祁连造山带老虎山地区下奥陶统和中、上奥陶统硅质岩的沉积学和地球化学研究表明:下奥陶统硅质岩为生物化学作用成因,沉积于被动大陆边缘深海环境;中、上奥陶统下部与玄武岩共生的硅质岩显示热液成因,沉积于洋脊环境;中、上奥陶统上部硅质岩指示生物化学成因,形成于大陆边缘环境。上述特征表明老虎山地区在早奥陶世为相对稳定的被动大陆边缘构造环境,所含硅质岩和陆缘碎屑岩为大陆斜坡相浊流沉积。中、晚奥陶世柴达木板块向华北板块俯冲在弧后产生离散型活动大陆边缘,形成弧后盆地,硅质岩及其共生的枕状玄武岩和浊积岩应属于扩张弧后盆地的产物。  相似文献   
90.
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. PT estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and PT estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak PTconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号