首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1617篇
  免费   341篇
  国内免费   444篇
测绘学   5篇
大气科学   1篇
地球物理   434篇
地质学   1794篇
海洋学   62篇
综合类   57篇
自然地理   49篇
  2024年   11篇
  2023年   24篇
  2022年   51篇
  2021年   75篇
  2020年   68篇
  2019年   74篇
  2018年   97篇
  2017年   88篇
  2016年   100篇
  2015年   91篇
  2014年   110篇
  2013年   151篇
  2012年   104篇
  2011年   109篇
  2010年   82篇
  2009年   116篇
  2008年   143篇
  2007年   124篇
  2006年   111篇
  2005年   98篇
  2004年   82篇
  2003年   93篇
  2002年   63篇
  2001年   51篇
  2000年   65篇
  1999年   39篇
  1998年   30篇
  1997年   44篇
  1996年   28篇
  1995年   15篇
  1994年   14篇
  1993年   10篇
  1992年   14篇
  1991年   7篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有2402条查询结果,搜索用时 31 毫秒
71.
This paper presents the findings from a study on gravity-induced slope deformations along the northern slope of Mt. Nuria (Rieti-Italy). The slope extends from the village of Pendenza to the San Vittorino plain and hosts the Peschiera River springs, i.e. the most important springs of the Central Apennines (average discharge: about 18 m3/s).

Detailed geological-geomorphological and geomechanical surveys, supported by a site stress-strain monitoring system and laboratory tests, led us to define the main evolutionary features of the studied phenomena. Based on the collected data, a “geological-evolutionary model” was developed with a view to identifying a spatio-temporal correlation between relief forms, jointing of the rock mass and its stress conditions. The geological-evolutionary model was expected to improve numerical simulations and to test our assumptions.

The numerical model also allowed us to simulate changes in the stress-strain conditions of the rock mass and correlate them with jointing, seepage, as well as with site-detected and site-monitored forms and deformations. In particular, significant relations between seepage, tensile stresses within the rock mass, karst solution and collapse of cavities were identified.  相似文献   

72.
73.
方东 《地质科技情报》2005,24(Z1):74-76
在邻海地区富含高承压水的土层中施工预应力锚杆支护工程的难度很大.介绍了锚杆的构造、作用机理、施工工艺以及决定锚杆施工质量的关键技术.以深圳某商住楼基坑施工为例,探讨了在承压水土层中采用锚杆支护的方法,创造性地提出了"先堵水后注浆"的施工工艺,可供沿海、沿江地区的类似工程借鉴.  相似文献   
74.
解古巍  周传明 《地层学杂志》2005,29(B11):450-453,i0001
华北蓟县系上部洪水庄组和铁岭组之间长期以来一直被认为是整合接触。近期在蓟县小岭子剖面发现洪水庄组顶部发育铁质风化壳,铁岭组底部有硅质褐铁矿屑砂岩,从而证明洪水庄组与铁岭组之间存在一次强烈的风化剥蚀,二者之间是假整合接触关系。  相似文献   
75.
The intensive agricultural and economic activities induce the increase of the risk of groundwater quality degradation through high groundwater pumping rates. The salinization and contamination are the main sources of this pollution, especially in coastal aquifers. The explanation of the origin of salinity for the shallow aquifer of Northern Sahel of Sfax was analysed by a chemical study of the groundwater main compounds. The partitioning of groundwaters into homogenous groups is undertaken by graphical techniques, including a Stiff pattern diagram, an expanded Durov diagram and several binary diagrams. The study indicates the presence of various salinization processes. In the recharge area, salinization is the result of dissolution/precipitation of the aquifer formation material (group I). The irrigation water return and the intensive pumping have been identified as major sources of salinization in the south by direct cation exchange and mixing reactions (groups II and III). The anomaly of high groundwater salinity observed near the Hazeg zone was explained by the presence of a seawater intrusion in this area. This hypothesis is related to the high chloride concentration, to the presence of inverse cation exchange reactions (group IV), and to the piezometric level inferior to sea level. To cite this article: R. Trabelsi et al., C. R. Geoscience 337 (2005).  相似文献   
76.
A multi-layered aquifer, typical of riverbank alluvial deposits in Korea, was studied to determine the hydrologic properties. The geologic logging showed that the subsurface of the study site was comprised of four distinctive hydrogeologic units: silt, sand, highly weathered and fresh bedrock layers. The electrical resistivity survey supplied information on lateral extension of hydrogeologic strata only partially identified by a limited number of the geologic loggings. The laboratory column tracer test for the recovered core of the sand layer resulted in a hydraulic conductivity of 5.00×10−2 cm/s. The slug tests performed in the weathered rock layer yielded hydraulic conductivities of 4.32–7.72×10−4 cm/s. Hydraulic conductivities for the sand layer calculated from the breakthrough curves of bromide ranged between 2.08×10−3 and 2.44×10−2 cm/s with a geometric mean of 6.89×10−3 cm/s, which is 7 times smaller than that from the laboratory column experiment. The trend of increasing hydraulic conductivity with an increase in tracer travel length is likely a result of the increased likelihood of encountering a high conductivity zone as more of the aquifer is tested. The combined hydrogeologic site characterization using hydraulic tests, tracer tests, and column test with geologic loggings and geophysical survey greatly enhanced the understanding of the hydrologic properties of the multi-layered alluvial aquifer.  相似文献   
77.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
78.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
79.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
80.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号