首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   77篇
  国内免费   2篇
测绘学   5篇
大气科学   12篇
地球物理   207篇
地质学   42篇
综合类   13篇
自然地理   49篇
  2024年   3篇
  2022年   7篇
  2021年   7篇
  2020年   14篇
  2019年   13篇
  2018年   13篇
  2017年   26篇
  2016年   18篇
  2015年   24篇
  2014年   38篇
  2013年   47篇
  2012年   23篇
  2011年   16篇
  2010年   14篇
  2009年   15篇
  2008年   15篇
  2007年   14篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  1991年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
31.
The sensitivity of streamflow simulated with the Soil and Water Assessment Tool (SWAT) model to Digital Elevation Model (DEM) resolution, DEM source and DEM resampling technique is still poorly understood. The objective of this study is to compare SWAT model streamflow estimates in the Johor River Basin (JRB), Malaysia for DEMs differing in resolution (from 20 to 1500 m), sources (Shuttle Radar Topography Mission: SRTM v4.1, Advanced Space-borne Thermal Emission and Reflection Radiometer: ASTER GDEM2, EarthEnv-DEM90 and Global Multi-resolution Terrain Elevation Data 2010: GMTED2010) and resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority). The key findings were as follows: (1) SRTM v4.1 (Root Mean Square Error (RMSE) = 11.16 m) and EarthEnv-DEM90 (RMSE = 12.4 m) had better vertical accuracy over the JRB compared to the ASTER GDEM2 (RMSE = 16.95 m); (2) Accurate annual streamflow simulations were obtained by using nearly all of the DEM resolutions, as pointed out by a relative error (RE) lower than 7% from 20 to 50 m and from 100 to 800 m DEMs; (3) Prediction errors were the lowest for ASTER GDEM2 (RE = 3.9%), followed by SRTM v4.1 (RE = 5.4%), EarthEnv-DEM90 (RE = 6.3%), and GMTED2010 (RE = 7.3%); (4) the majority and nearest neighbour resampling techniques performed the best (RE of 6.0%), followed by bilinear interpolation (RE of 7.2%) and cubic convolution (7.5%). The study indicates that DEM resolution is the most sensitive SWAT model DEM parameter compared to DEM source and DEM resampling technique for streamflow simulation within SWAT.  相似文献   
32.
运用SWAT模型对水土保持、减少化肥农药施用量、减少表层土壤施肥量比例、退耕还林及综合措施对于不同非点源污染在灞河流域的消减效果进行了模拟。结果表明:(1)水保措施对N、P、DDT的削减效果最高可达44.4%,相对而言对于溶解磷的削减效果不是很明显。(2)减少施肥量措施对溶解P、总P、NO3-N的削减率相对较高,而对于其它指标的削减效果不是很明显;减少农药施用量措施对DDT的削减效果较好,削减率可达50.92%。(3)减少表层土壤施肥量占总施肥量的比例措施对溶解P、总P的削减效果较为明显,而对于其它指标的削减效果不是很明显。(4)退耕还林措施对于各项指标都有着明显的削减作用。(5)综合措施对于各项指标均有着很好的削减作用,总体看来综合措施可大大减少流域内的非点源污染负荷,对于改善流域水环境质量可起到巨大的作用。研究为灞河流域非点源污染最佳管理措施的实施提供了明确实际的决策支持。  相似文献   
33.
 在分布式水文模型中,探索产生分布式降水数据的方法是该领域研究的热点之一,发展基于水文物理过程的模型校准方法是实践PUB的热点与难点。基于SWAT分布式水文模型,以资料稀缺的伊犁河上游为研究区域,针对流域的水资源评价关键问题,首先准确描述区域的降水空间分布特征,并基于流域水文过程采用综合流域特征、多时间尺度、多变量和多站点的适宜性模型校准新方法,取得了满意的模拟结果,表明模型较好地再现了流域的水文过程。另外,完善水文机理研究,提高降水及下垫面相关参数的观测水平是改善模型模拟的有效途径。  相似文献   
34.
基于SWAT模型的汉江流域径流模拟   总被引:1,自引:0,他引:1  
夏智宏  周月华  许红梅 《气象》2009,35(9):59-67
应用SWAT(Soil and Water Assessment Tool)分布式水文模型对汉江流域1971-2000年30年逐月径流进行了模拟.结果表明:模型模拟精度高于评价标准(模拟效率Ens>0.5,相关系数r 2>0.6),SWAT模型适用于汉江流域的径流模拟;水量平衡各要素中,30年月、年平均蒸散发量、地表径流量、土壤对地下水补给量、土壤含水变化量、地下水侧流量分别占降水量的55.97%、25.88%、17.64%、0.26%、0.25%,蒸散发是该流域水量的主要输出项;各月30年平均降水量变化趋势与地表径流量变化趋势较一致,而与基流量变化趋势一致性较差;30年流域降水量年变化趋势与地表径流量、基流量的变化趋势较一致;30年月、年地表径流量对降水的响应程度高于基流.  相似文献   
35.
Hydrological models are useful tools to analyze present and future conditions of water quantity and quality. The integrated modelling of water and nutrients needs an adequate representation of the different discharge components. In common with many lowlands, groundwater contribution to the discharge in the North German lowlands is a key factor for a reasonable representation of the water balance, especially in low flow periods. Several studies revealed that the widely used Soil and Water Assessment Tool (SWAT) model performs poorly for low flow periods. This paper deals with the extension of the groundwater module of the SWAT model to enhance low flow representation. The current two‐storage concept of SWAT was further developed to a three‐storage concept. This was realized due to modification of the groundwater module by splitting the active groundwater storage into a fast and a slow contributing aquifer. The results of this study show that the groundwater module with three storages leads to a good prediction of the overall discharge especially for the recession limbs and the low flow periods. The improved performance is reflected in the signature measures for the mid‐segment (percent bias ?2.4% vs ?15.9%) and the low segment (percent bias 14.8% vs 46.8%) of the flow duration curve. The three‐storage groundwater module is more process oriented than the original version due to the introduction of a fast and a slow groundwater flow component. The three‐storage version includes a modular approach, because groundwater storages can be activated or deactivated independently for subbasin and hydrological response unit level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
36.
Efficiency of non‐point source pollution control methods may be altered in future climate. This study investigated climate change impacts on sediment and nutrient transport, and efficiency of best management practices (BMPs), in the Upper Pearl River Watershed (UPRW) in Mississippi. The Soil and Water Assessment Tool was applied to the UPRW using observed flow, sediment and nutrient data. Water quality samples were collected at three US geological survey gauging stations. The model was successfully calibrated and validated for daily time steps (Nash Sutcliffe efficiency and coefficient of determination – R2 up to 0.7) using manual and automatic (sequential uncertainty fitting version 2) methods from February 2010 to May 2011. Future weather scenarios were simulated using the LARS‐WG model, a stochastic weather generator, with Community Climate System Model, global climate model, which was developed by the National Center for Atmospheric Research in the USA. On the basis of the Special Report on Emissions Scenarios A1B, A2 and B1 of the Intergovernmental Panel on Climate Change, climate change scenarios were simulated for the mid (2046–2065) and late (2080–2099) century. Effectiveness of four BMPs (Riparian buffer, stream fencing, sub‐surface manure applications and vegetative filter strips) on reducing sediment and nutrient were evaluated in current and future climate conditions. Results show that sediment, nitrogen and phosphorus loadings will be increased up to a maximum of 26.3%, 7.3% and 14.3%, respectively, in future climate conditions. Furthermore, the effectiveness of BMPs on sediment removal will be reduced in future climate conditions, and the efficiency of nitrogen removal will be increased, whereas phosphorus removal efficiency will remain unchanged. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
Water resources in semi-arid regions like the Mediterranean Basin are highly vulnerable because of the high variability of weather systems. Additionally, climate change is altering the timing and pattern of water availability in a region where growing populations are placing extra demands on water supplies. Importantly, how reservoirs and dams have an influence on the amount of water resources available is poorly quantified. Therefore, we examine the impact of reservoirs on water resources together with the impact of climate change in a semi-arid Mediterranean catchment. We simulated the Susurluk basin (23.779-km2) using the Soil and Water Assessment Tool (SWAT) model. We generate results for with (RSV) and without reservoirs (WRSV) scenarios. We run simulations for current and future conditions using dynamically downscaled outputs of the MPI-ESM-MR general circulation model under two greenhouse gas relative concentration pathways (RCPs) in order to reveal the coupled effect of reservoir and climate impacts. Water resources were then converted to their usages – blue water (water in aquifers and rivers), green water storage (water in the soil) and green water flow (water losses by evaporation and transpiration). The results demonstrate that all water resources except green water flow are projected to decrease under all RCPs compared to the reference period, both long-term and at seasonal scales. However, while water scarcity is expected in the future, reservoir storage is shown to be adequate to overcome this problem. Nevertheless, reservoirs reduce the availability of water, particularly in soil moisture stores, which increases the potential for drought by reducing streamflow. Furthermore, reservoirs cause water losses through evaporation from their open surfaces. We conclude that pressures to protect society from economic damage by building reservoirs have a strong impact on the fluxes of watersheds. This is additional to the effect of climate change on water resources.  相似文献   
38.
In the present study, a semi‐distributed hydrological model soil and water assessment tool (SWAT) has been employed for the Ken basin of Central India to predict the water balance. The entire basin was divided into ten sub basins comprising 107 hydrological response units on the basis of unique slope, soil and land cover classes using SWAT model. Sensitivity analysis of SWAT model was performed to examine the critical input variables of the study area. For Ken basin, curve number, available water capacity, soil depth, soil evaporation compensation factor and threshold depth of water in the shallow aquifer (GWQ_MN) were found to be the most sensitive parameters. Yearly and monthly calibration (1985–1996) and validation (1997–2009) were performed using the observed discharge data of the Banda site in the Ken basin. Performance evaluation of the model was carried out using coefficient of determination, Nash–Sutcliffe efficiency, root mean square error‐observations standard deviation ratio, percent bias and index of agreement criterion. It was found that SWAT model can be successfully applied for hydrological evaluation of the Ken basin, India. The water balance analysis was carried out to evaluate water balance of the Ken basin for 25 years (1985–2009). The water balance exhibited that the average annual rainfall in the Ken basin is about 1132 mm. In this, about 23% flows out as surface run‐off, 4% as groundwater flow and about 73% as evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
39.
土地利用/覆被变化对细河流域的水文过程影响显著。为研究不同土地利用/覆被情景对流域水文要素的影响情况,本文构建了适用于细河流域的SWAT分布式水文模型,并拟算出不同情景下的流域多年平均月径流量、多年平均地表径流深度、多年平均蒸发量以及多年平均土壤侧流。模拟结果显示:当流域农林用地增加时,平均月径流量增加了8.40%;当建设用地增加时,平均月径流量减少了4.11%;当旱地及其他未利用地增加时,平均月径流量减少了1.93%。综上所述,细河流域农林用地变化对径流产量的影响相对最大,其增加导致径流量增加;旱地及其他未利用对径流产量的影响相对最小,建设用地和旱地及其他未利用地的增加导致径流量减少。  相似文献   
40.
Abstract

A significant decrease in mean river flow as well as shifts in flood regimes have been reported at several locations along the River Niger. These changes are the combined effect of persistent droughts, damming and increased consumption of water. Moreover, it is believed that climate change will impact on the hydrological regime of the river in the next decades and exacerbate existing problems. While decision makers and stakeholders are aware of these issues, it is hard for them to figure out what actions should be taken without a quantitative estimate of future changes. In this paper, a Soil and Water Assessment Tool (SWAT) model of the Niger River watershed at Koulikoro was successfully calibrated, then forced with the climate time series of variable length generated by nine regional climate models (RCMs) from the AMMA-ENSEMBLES experiment. The RCMs were run under the SRES A1B emissions scenario. A combination of quantile-quantile transformation and nearest-neighbour search was used to correct biases in the distributions of RCM outputs. Streamflow time series were generated for the 2026–2050 period (all nine RCMs), and for the 2051–2075 and 2076–2100 periods (three out of nine RCMs) based on the availability of RCM simulations. It was found that the quantile-quantile transformation improved the simulation of both precipitation extremes and ratio of monthly dry days/wet days. All RCMs predicted an increase in temperature and solar radiation, and a decrease in average annual relative humidity in all three future periods relative to the 1981–1989 period, but there was no consensus among them about the direction of change of annual average wind speed, precipitation and streamflow. When all model projections were averaged, mean annual precipitation was projected to decrease, while the total precipitation in the flood season (August, September, October) increased, driving the mean annual flow up by 6.9% (2026–2050), 0.9% (2051–2075) and 5.6% (2076–2100). A t-test showed that changes in multi-model annual mean flow and annual maximum monthly flow between all four periods were not statistically significant at the 95% confidence level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号