首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   10篇
  国内免费   4篇
大气科学   1篇
地球物理   56篇
地质学   40篇
海洋学   9篇
综合类   2篇
自然地理   15篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
101.
Present understanding of armour formation and the dynamics of grain entrainment and movement, especially in natural environments with coarse and poorly-sorted bed material, is still incomplete. There are many details which require further field observation for clarification and hypothesis testing, including aspects of grain interaction during bedload transport. Evidence from the Tambo River suggests that there may be mechanisms of armour development which have significance in certain field situations but which have been relatively neglected in the literature. The particular mechanism envisaged for the Tambo River involves the accumulation on the bed surface of large clasts which had been moving as an overpassing traction carpet. These clasts are not genetically related to the underlying subarmour sediments, but nonetheless act as an armour which protects them from scour, and which hence affects grain mobility and bedload transport rates.  相似文献   
102.
The form and structure of a tributary confluence bar in a regulated channel are analysed and related to channel adjustment to the imposed flow regime. The bar is characterized by a tripartite structure with two facies, and by marked lateral coarsening, characteristics which relate to the changing hydraulic conditions within the narrowing channel form.  相似文献   
103.
Abstract

For the past 200?years, there have been numerous investigations and much speculation concerning the formation of the dramatic valleys of the Blue Mountains of NSW. In this paper, further evidence for the uplift and erosional history of the Blue Mountains is obtained from longitudinal river profiles, detailed mapping of the Rickabys Creek Gravel on the Lapstone Structural Complex and consideration of the topographical position of Miocene basalts. Knickpoints on the main rivers flowing east from the Great Dividing Range are identified and interpreted to be due to uplift events linked to the northward movement of the Australian continent over mantle inhomogeneities. At the Lapstone Structural Complex on the eastern range front, the occurrence of the Rickabys Creek Gravel and the nature of the over-steepened reaches on the rivers and streams crossing the Complex, suggest a more recent ongoing phase of uplift and antecedent river erosion. The Miocene basalts provide evidence of this landscape 20–15?Ma. Their locations with respect to the current rivers and ridges are interpreted to show additional evidence for recent uplift that has resulted in the formation of the Lapstone Structural Complex. It is suggested that this uplift commenced 10–5?Ma when the contemporary compressive stress field was established.
  • KEY POINTS
  • Longitudinal profiles for major rivers in the Blue Mountains are consistent with a model of initial Cretaceous uplift followed by further Cenozoic uplift associated with dynamic topography.

  • Mapping of Rickabys Creek Gravel within the Lapstone Structural Complex suggests the presence of antecedent rivers.

  • Within the Lapstone Structural Complex, stream profiles, gravels and nearby outcrops of Miocene basalts are interpreted to indicate a third phase of uplift, possibly since 10?Ma.

  相似文献   
104.
Gravel-bed surfaces are characterized by morphological features occurring at different roughness scales. The total shear stress generated by the flow above such surfaces is balanced by the sum of friction drag (grain stress) and form drag components (created by bed forms). To facilitate a better understanding of total resistance and bed load transport processes, there is a need to mathematically separate shear stress into its component parts. One way to do so is to examine the properties of vertical velocity profiles above such surfaces. These profiles are characterized by an inner layer that reflects grain resistance and an outer layer that reflects total resistance. A flume-based project was conducted to address these concerns through systematically comparing different roughness scales to ascertain how increased roughness affects the properties of vertical velocity profiles. Great care was taken to create natural roughness features and to obtain flow data at a high spatial and temporal resolution using an Acoustic Doppler Velocimeter.Average vertical velocity profiles above each roughness scale were clearly segmented. The vertical extent of the inner flow region was directly related to the scale of roughness present on the bed (and independent of flow depth), increasing with increased roughness. On a rough but rather uniform “plane” bed made of heterogeneous coarse sediments (with no bed forms), the shape of the velocity profile was clearly dominated by the local variations in grain characteristics. When pebble clusters were superimposed, the average shear stress in the outer flow region increased by 100% from the plane bed conditions. The ratio of inner grain shear stress to outer total shear stress for this pebble cluster experiment was 0.18 under shallow flow conditions and 0.3 under deep flow conditions. The grain stress component that should be used in bed load transport equations therefore appears to vary in these experiments between 15% and 30% of the total channel stress, increasing with decreased resistance. Roughness height (Ks/D50) values at the grain scale for the plane bed and pebble cluster experiments were 0.73 and 0.63, respectively. These are values that should be used in flow resistance equations to predict grain resistance and grain stress for bed load transport modeling.  相似文献   
105.
1987年以来中国科学院海洋研究所多次对黄、东海陆架进行了调查,利用薄片分析、数理统计、化学分析及古生物鉴定等多种方法,分别对所采获的砂岩砾石的结构、组成等作了研究。结果表明这些砂岩砾石不但分布广泛、数量丰富,而且大小不一,从<1cm到最大60cm不等,形态细长、扁平,成因类型属于风成石类。此外,砾石中普遍含有海绿石及海相有孔虫、介形虫等.证明黄、东海陆架上大面积出露以砂岩砾石为代表的第三系海相地层,经过长期复杂的风化作用后,其破碎产物成为海底沉积物的重要来源。  相似文献   
106.
古湖泊砂砾堤研究表明,24kaB.P.,兹格塘错、错鄂分别存在10m、30m(高出现代湖面)的高湖面,湖泊面积分别可达272km2、220km2,是现代湖泊的1.42、3.12倍.与此相比,9.0-6.0kaB.P.湖面略低;在兹格塘错,古湖泊高出现代湖面8m,面积约为246km2,比现代大56km2;在错鄂,古湖面高出现代12m,面积约为138km2.基于Kutzbach水能联合方程,利用逐次逼近法取得有关参数,重建的各流域上述各时期的降水量分别可达(400±20)mm/a (兹格塘错 24kaB.P.)、(535±20)mm/a (错鄂 24kaB.P.)、(370±20)mm/a (兹格塘错 9.0-6.0kaB.P.)、(470±20)mm/a (错鄂 9.0-6.0kaB.P.).  相似文献   
107.
振动沉管粒料桩在高路堤软基处理中的应用   总被引:2,自引:2,他引:2  
通过四川成南高速公路NO .E4合同段振动沉管粒料桩、塑料排水板与砂粒垫层综合处治法在高填路堤软基处理的施工实践, 总结出在山岭重丘区高填路堤软基处理的施工工艺、质量控制, 桩身密实度检测, 垂直沉降与侧位移监控等一套系统方法, 通过现场实测数据与设计沉降数据对比, 得出高填路堤软基处理地段综合运用新技术、新工艺与新材料的成功经验, 具有一定的推广价值。  相似文献   
108.
A cross-section of fluvial gravel deposits of late Pleistocene age exposed at Po Chue Tam, Lantau Island, Hong Kong contains two facies: a lower facies of planar cross-bedded gravel (Gp) and an overlying facies of clast-supported, massive gravels (Gcm). The Gp gravels include five gravel couplets. Each couplet consists of a clast-supported, coarse gravel-dominated bed and an overlying clast-supported, fine gravel-dominated bed with a discrete bounding surface. Tectonic uplift predating the last interglacial transgression produced a large amount of detritus in the source area. Excessive peak rainfall intensity resulting from enhanced seasonality of monsoonal precipitation in the following glacial period triggered catastrophic floods, which transported mature detritus in large quantities into a fault-controlled piedmont basin. The Gp gravels were deposited by pulsating flood flows. In relation to kinematic waves of particles, bedload sediment was longitudinally sorted and segregated into a train of gravel sheets. They draped over each other and accreted laterally due to expansion of flow, producing planar cross stratifications that are characteristic of recurrent, couplet-style coarse/fine cross beds. In contrast, Gcm gravels were laid down as a single, nearly horizontal bed by a catastrophic flood that was not subject to flow pulsation.  相似文献   
109.
We investigated the potential of using a 24-electrode resistivity imaging apparatus for rapid reconnaissance surveys for natural-aggregate accumulation. The surveys were first calibrated at sites with known geometry of sand and gravel layers, which showed that subsurface accumulation of coarse material was accurately resolved with both 2- and 4-m electrode spacing. The inverted absolute resistivity of economically viable gravel deposits varied in the range of 300–1500 Ω m, depending on variation in ground-moisture levels. The exploration surveys were then conducted at seven sites where geomorphological analyses indicated a potential for gravel. Four of these sites, where subsurface resistivity did not exceed 30–40 Ω m, were found to have very little or no coarse material. The three remaining sites showed significant accumulations of high-resistivity material, two of which were subsequently augered for verification. The results of drilling demonstrated that resistivity images were an effective indicator of the presence of coarse material in the subsurface, allowing accurate determination of subsurface distribution and thickness of sand and gravel strata. The total volume of a deposit could easily be estimated from resistivity images. The absolute quality and economic value of the material, is, however, difficult to ascertain from resistivity images alone without drilling.  相似文献   
110.
Uplift of Tibet Plateau and formation of Asian Monsoon greatly affect East Asian geomorphological evolution, climate change and environment systems. Thus, those phenomena also control the origin, size and direction of river systems. The Yangtze River, as the most important linkage between Tibet Plateau and the East Asian marginal seas, delivers large volumes of water, sediment, and associated chemicals from its headwater regions and tributaries to the East China Sea, significantly influencing sedimentary system evolution in its drainage basin. Therefore, the formation of the modern Yangtze River and its geological-time evolution history have been paid more and more attention to since the beginning of the last century. After debated for more than a century, the First Bend in Shigu area and the Three Gorges have been known as the key capture point of the Yangtze River's evolution history. In particularly, the Three Gorges incision period remains greatly controversial, which mainly focuses on Cretaceous period-Neogene period, early Pleistocene period, and late Quaternary period. The Yichang Gravel, just located downstream and outlet of the Three Gorges with an inverted triangle shape, is mainly distributed in western Jianghan Basin with over 1 000km2. Because of its wide distribution and key geographical location, many typical profiles of Yichang Gravel have been the critical materials for studies on stratigraphic division, geomorphic evolution, and paleoenvironment change in middle Yangtze River Basin, especially on the Three Gorges incision history. Based on the previous field investigation, the Yichang gravel unconformably overlies the Cretaceous bedrocks and underlies the mid-Pleistocene vermicular red earth. In addition, studies on heavy mineral assemblages, Pb isotopic compositions of detrital K-feldspar grains, magnetic characteristics as well as pollen assemblage characteristics have showed that sediments in Yichang Gravel are mainly derived from upper Yangtze River Basin, such as Jinshangjiang drainage, Minjiang drainage, Jialingjiang drainage and Wujiang drainage. Based on the above comprehensive analysis, researchers demonstrated that the depositing time of Yichang Gravel can best constrain the Three Gorges incising time. The absolute altitude of Yichang Gravel exceeds 110m, and many thick sand lens are developed from top to bottom of the profiles. In this study, we applied the quartz Ti-Li center ESR dating method in Yichang Gravel to determine its absolute formation age, and then to constrain the minimum cutting-through time of Three Gorges. Eight samples(SXY-1, SXY-2, YC-1-4, LJY-1, LJY-2)were collected from the sand lens at depths of 4m, 19m, 40m, 51m, 63m, 75m, 83m and 99m respectively from the top of the profile. At the same time, in order to evaluate the residual dose of Ti-Li center after sunlight bleaching, we also sampled four modern surface Yangtze River sediments near Yichang Gravel for ESR measurement. The result shows that the quartz Ti-Li center ESR signal intensity of the 4 modern fluvial sediments samples are zero, which implies that the Ti-Li center ESR signal intensity of quartz in Yichang Gravel sand lens could be bleached to zero before the last burial. Thus, the above results indicate that the ESR dating results of this paper are reliable. The ESR absolute age from top to bottom of the profile is 0.73Ma BP,0.87Ma BP,0.98Ma BP,1.04Ma BP,1.05Ma BP,1.10Ma BP, 1.11Ma BP, 1.12Ma BP, respectively. The ESR dating results show that the Yichang Gravel began to deposit at about 1. 12Ma BP until 0. 73Ma BP, and the Ti-Li center ESR age indicates that the Yangtze River cut through Three Gorges area no later than 1.12Ma BP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号