首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   427篇
  国内免费   1176篇
测绘学   47篇
大气科学   121篇
地球物理   382篇
地质学   2676篇
海洋学   646篇
天文学   283篇
综合类   165篇
自然地理   220篇
  2024年   11篇
  2023年   37篇
  2022年   61篇
  2021年   111篇
  2020年   94篇
  2019年   110篇
  2018年   90篇
  2017年   119篇
  2016年   140篇
  2015年   122篇
  2014年   170篇
  2013年   200篇
  2012年   171篇
  2011年   193篇
  2010年   184篇
  2009年   236篇
  2008年   236篇
  2007年   235篇
  2006年   219篇
  2005年   192篇
  2004年   191篇
  2003年   162篇
  2002年   140篇
  2001年   115篇
  2000年   173篇
  1999年   123篇
  1998年   124篇
  1997年   100篇
  1996年   86篇
  1995年   86篇
  1994年   75篇
  1993年   50篇
  1992年   37篇
  1991年   24篇
  1990年   31篇
  1989年   15篇
  1988年   14篇
  1987年   15篇
  1986年   10篇
  1985年   15篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1978年   3篇
  1976年   1篇
排序方式: 共有4540条查询结果,搜索用时 280 毫秒
81.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   
82.
We estimate (/T) P of the lower mantle at seismic frequencies using two distinct approaches by combining ambient laboratory measurements on lower mantle minerals with seismic data. In the first approach, an upper bound is estimated for |(/T) P | by comparing the shear modulus () profile of PREM with laboratory room-temperature data of extrapolated to high pressures. The second approach employs a seismic tomography constraint ( lnV S / lnV P ) P =1.8–2, which directly relates (/T) P with (K S /T) P . An average (K S /T) P can be obtained by comparing the well-established room-temperature compression data for lower mantle minerals with theK S profile of PREM along several possible adiabats. Both (K S /T) and (/T) depend on silicon content [or (Mg+Fe)/Sil of the model. For various compositions, the two approaches predict rather distinct (/T) P vs. (K S /T) P curves, which intersect at a composition similar to pyrolite with (/T) P =–0.02 to –0.035 and (K S /T) P =–0.015 to –0.020 GPa/K. The pure perovskite model, on the other hand, yields grossly inconsistent results using the two approaches. We conclude that both vertical and lateral variations in seismic velocities are consistent with variation due to pressure, temperature, and phase transformations of a uniform composition. Additional physical properties of a pyrolite lower mantle are further predicted. Lateral temperature variations are predicted to be about 100–250 K, and the ratio of ( lnp/ lnV S ) P around 0.13 and 0.26. All of these parameters increase slightly with depth if the ratio of ( lnV S / lnV P ) P remains constant throughout the lower mantle. These predicted values are in excellent agreement with geodynamic analyses, in which the ratios ( ln / lnV S ) P and ( / lnV S ) P are free parameters arbitrarily adjusted to fit the tomography and geoid data.  相似文献   
83.
与中上地壳相比,对下地壳组成、结构的认识受限于样品的获取,然而天然火山作用携带的下地壳捕虏体可以为了解下地壳提供关键样品。华北克拉通是世界上最古老的克拉通之一,显生宙以来的火山作用携带有丰富的下地壳捕虏体,为探测华北下地壳组成、结构及其形成过程提供了可能。通过对这些捕虏体定深、定性及定年的综合研究,构建了以信阳,莒南,汉诺坝和女山等典型地区为代表的下地壳组成、结构剖面模型。这些剖面表明,华北克拉通下地壳具有分层的特点,且上老下新,暗示可能与底侵作用有关。其中捕虏体的锆石U- Pb年龄和Hf同位素的研究,揭示了该克拉通下地壳复杂的形成与演化过程:最古老的组成部分可能老至~4. 0 Ga冥古宙,此后经历了3. 80~3. 65 Ga古太古代的再造作用,2. 8~2. 5 Ga 新太古代和2. 3~1. 8 Ga 古元古代的增生与再造共存,同时还经历了显生宙以来包括462~220 Ma,140~90 Ma和47~45 Ma的增生与再造事件。  相似文献   
84.
内蒙古正镶白旗碎斑熔岩岩石学特征及其岩相划分   总被引:4,自引:0,他引:4  
白旗碎斑熔岩为不规则穹状体,可分为边缘玻质碎斑熔岩、过渡霏细碎斑熔岩、中心粒状碎斑熔岩和根部花岗斑岩四个岩性带。从玻质碎斑熔岩到粒状碎斑熔岩,斑晶碎裂度逐渐减弱,珠边结构在粒状碎斑熔岩中最发育,根部花岗斑岩与正常次火山岩相近。碎斑熔岩中钾长石有序度低,指示了岩石高温成因特征。白旌碎斑熔岩属太平洋岩系钙碱质系列,原始岩浆由来源于上地幔和下地壳熔体的混熔作用形成。  相似文献   
85.
In the East China Sea (ECS), there are some mud areas, including the south coastal mud area, the north coastal mud area, and the mud area to the southwest of Cheju Island. X-ray fluorescence (XRF) techniques and Thermal Ionization Mass Spectrometry (TIMS) were used to study the high-resolution sedimentary record of Pb concentrations and Pb stable isotopic compositions in the past one hundred and fifty years in the coastal mud of the ECS. Pb concentrations of a ^210Pb dating S5 core in the study area have increased rapidly since 1980, and reached the maximal value with 65.08 μg/g in 2000, corresponding to the fast economic development of China since the implementation of the "Reform and Open Policy" in 1978; ^206Pb/^207Pb ratios generally had stabilized at 1.195 from 1860 to 1966, and decreased gradually from 1966 to 2000, indicating that the anthropogenic source Pb contribution to the ECS has increased gradually since 1966, especially since 1980. Pb concentrations decreased distinctly from 2000 to 2003 and ^206Pb/^207Pb ratios increased from 2001 to 2003, corresponding closely to the ban of lead gasoline from 2000 in China. From 1950 to 2003, there occurred four distinct decrease events of ^206Pb/^207Pb, possibly responding to the Changjiang River (Yangtze River) catastrophic floods in 1998, 1991, 1981 and 1954; from 1860 to 1966, there were two decrease periods of ^206Pb/^207Pb, which may respond to the catastrophic floods of Changjiang River in 1931 and 1935, and 1870. As a result of the erosion and drowning by the catastrophic floods, the anthropogenic lead accumulated in soil and water environments over a long period of time was brought into the Changjiang River, then part of them was finally transported into the ECS, which leads to changes in Pb stable isotopic composition.  相似文献   
86.
This review gives an overview of the use and development of reference materials of geochemical and environmental interest in the literature of the years 2004 and 2005. In these years the performance of existing methods has been improved and new geochemical applications using new techniques have been developed. Accordingly, there was an increasing need for new reference materials, especially for in situ microanalysis and for precise stable isotope measurements. In addition, there was a notable trend for further characterisation of existing reference materials, mainly for the platinum-group elements. This review focuses on five topics: reference materials for platinum-group elements, reference glasses for in situ microanalysis, zircon reference materials, isotopic reference materials, and the development and certification of reference materials.  相似文献   
87.
88.
The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid  相似文献   
89.
In the mid-1980s, it was concluded based on geochemical study that Th, Sc, La concentrations and ratios Th/Sc, La/Sc and Eu/Eu* did not wary significantly in the post-Archean time. It was impossible to judge about compositional variations of upper crust during the Riphean and Vendian, because data of that time characterized a limited number of samples from the post-Archean basins of Australia, New Zealand, and Antarctic. Considered in this work are variations of Eu/Eu*, LREE/HREE, Th/Sc, and La/Sc ratios in Upper Precambrian fine-grained siliciclastic rock of the Southern Urals western flank (Bashkirian meganticlinorium) and Uchur-Maya region (Uchur-Maya plate and Yudoma-Maya belt). As is established, only the Eu anomaly in the studied siliciclastic rocks is practically identical to this parameter of the average post-Archean shale. Three other parameters plot on the Riphean-Vendian variation curves with positive and negative excursions of diverse magnitude, which do not coincide always in time. It is assumed that these excursions likely mark stages of local geodynamic activity, destruction of pre-Riphean cratons, and progressing recycling of sedimentary material during the Riphean.  相似文献   
90.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号