首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4338篇
  免费   783篇
  国内免费   683篇
测绘学   674篇
大气科学   381篇
地球物理   1445篇
地质学   2102篇
海洋学   517篇
天文学   67篇
综合类   216篇
自然地理   402篇
  2024年   9篇
  2023年   51篇
  2022年   97篇
  2021年   132篇
  2020年   161篇
  2019年   177篇
  2018年   175篇
  2017年   250篇
  2016年   215篇
  2015年   211篇
  2014年   300篇
  2013年   334篇
  2012年   252篇
  2011年   307篇
  2010年   207篇
  2009年   324篇
  2008年   362篇
  2007年   328篇
  2006年   288篇
  2005年   230篇
  2004年   225篇
  2003年   175篇
  2002年   153篇
  2001年   125篇
  2000年   143篇
  1999年   99篇
  1998年   88篇
  1997年   72篇
  1996年   58篇
  1995年   59篇
  1994年   37篇
  1993年   27篇
  1992年   31篇
  1991年   13篇
  1990年   17篇
  1989年   12篇
  1988年   13篇
  1987年   10篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有5804条查询结果,搜索用时 31 毫秒
151.
Histogram and variogram inference in the multigaussian model   总被引:1,自引:4,他引:1  
Several iterative algorithms are proposed to improve the histogram and variogram inference in the framework of the multigaussian model. The starting point is the variogram obtained after a traditional normal score transform. The subsequent step consists in simulating many sets of gaussian values with this variogram at the data locations, so that the ranking of the original values is honored. The expected gaussian transformation and the expected variogram are computed by an averaging operation over the simulated datasets. The variogram model is then updated and the procedure is repeated until convergence. Such an iterative algorithm can adapt to the case of tied data and despike the histogram. Two additional issues are also examined, referred to the modeling of the empirical transformation function and to the optimal pair weighting when computing the sample variogram.  相似文献   
152.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   
153.
This paper presents an analysis of the distribution of the time τ between two consecutive events in a stationary point process. The study is motivated by the discovery of unified scaling laws for τ for the case of seismic events. We demonstrate that these laws cannot exist simultaneously in a seismogenic area. Under very natural assumptions we show that if, after rescaling to ensure Eτ =1, the interevent time has a universal distribution F, then F must be exponential. In other words, Corral’s unified scaling law cannot exist in the whole range of time. In the framework of a general cluster model we discuss the parameterization of an empirical unified law and the physical meaning of the parameters involved. An erratum to this article is available at .  相似文献   
154.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
155.
A series of geotechnical centrifuge physical modeling tests were performed to assess the potential use of a new cost-effective mechanically stabilized earth system for retrofitting marginally stable cohesive slopes. The proposed system utilizes the dual functions of reinforcement and drainage by directly inserting high strength non-woven geotextile strips into slopes, with little or no excavation required behind the slope face. The system significantly increases the factor of safety of potentially unstable cohesive slopes, and can be constructed at less expense and more rapidly than conventional mechanically stabilized earth systems.  相似文献   
156.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
157.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
158.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
159.
Slopes consisting of saturated sand have recently moved down-slope tens or hundreds of meters under the action of earthquakes. This paper presents a simplified but accurate method predicting the triggering and displacement of such landslides. For this purpose, a simplified constitutive model simulating soil response of saturated sands along slip surfaces is proposed and validated. Then, this constitutive model is coupled with the multi-block sliding system model to predict the triggering and displacement of such slides. The multi-block model considers a general mass sliding on a trajectory which consists of n linear segments. The steps needed to apply this method are described in detail. The method was applied successfully to predict the triggering, the motion and the final configuration of the well-documented (a) Higashi Takezawa, (b) Donghekou and (c) Nikawa earthquake-induced slides.  相似文献   
160.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号