首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24813篇
  免费   3676篇
  国内免费   5013篇
测绘学   3194篇
大气科学   3974篇
地球物理   6312篇
地质学   10153篇
海洋学   3123篇
天文学   1102篇
综合类   1751篇
自然地理   3893篇
  2024年   88篇
  2023年   278篇
  2022年   695篇
  2021年   888篇
  2020年   1024篇
  2019年   1292篇
  2018年   881篇
  2017年   1180篇
  2016年   1152篇
  2015年   1222篇
  2014年   1553篇
  2013年   1852篇
  2012年   1556篇
  2011年   1673篇
  2010年   1290篇
  2009年   1683篇
  2008年   1677篇
  2007年   1737篇
  2006年   1690篇
  2005年   1328篇
  2004年   1234篇
  2003年   1047篇
  2002年   798篇
  2001年   718篇
  2000年   640篇
  1999年   605篇
  1998年   604篇
  1997年   526篇
  1996年   430篇
  1995年   385篇
  1994年   316篇
  1993年   307篇
  1992年   218篇
  1991年   173篇
  1990年   132篇
  1989年   128篇
  1988年   104篇
  1987年   57篇
  1986年   53篇
  1985年   51篇
  1984年   30篇
  1983年   14篇
  1982年   26篇
  1981年   20篇
  1980年   21篇
  1978年   14篇
  1977年   19篇
  1976年   25篇
  1973年   17篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
961.
饮食地理文化作为地域文化中最具地方特色的重要元素,在现代人口大规模流动背景下呈现出全新的多样化局面,而基于传统认知的“南甜北咸”的地域分异已然不能代表中国现代食甜分布的空间特征。因此,本文采用网络爬虫技术,获取我国大陆31个省会城市共计约2000万条美食消费数据,从传统类菜品、主食类菜品、饮料类和甜品类菜品4个方面计算城市食甜度,在ArcGIS、MySQL软件支持下,借助GIS空间分析和数理统计方法探究我国现代食甜习惯的空间分布特征,分析影响食甜分布的因素。研究发现:① 中国食甜在空间分布上存在显著的地域分异特征,聚类分析评价参数R 2高达0.88,现代食甜习惯总体呈现“东高北中,西微内低”的包围式格局;② 从整体抑或局部角度,在1%显著性水平上莫兰指数均为正,中国食甜分布呈现显著的空间正相关关系,形成特色鲜明的3个地理集聚区,即以苏浙沪闽为主的东南沿海高甜集聚区,以渝黔川为主的西南内陆低甜集聚区和以陕宁为主的西北内陆低甜集聚区;③ 构建了中国现代食甜习惯分布影响因素模型,其拟合精度为0.82,分析结果显示降水、湿度、气温等气象要素及地理位置是影响现代我国食甜空间分布的重要因素。  相似文献   
962.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
963.
This paper endows the recently‐proposed granular element method (GEM) with the ability to perform 3D discrete element calculations. By using non‐uniform rational B‐Splines to accurately represent complex grain geometries, we proposed an alternative approach to clustering‐based and polyhedra‐based discrete element methods whereby the need for complicated and ad hoc approaches to construct 3D grain geometries is entirely bypassed. We demonstrate the ability of GEM in capturing arbitrary‐shaped 3D grains with great ease, flexibility, and without excessive geometric information. Furthermore, the applicability of GEM is enhanced by its tight integration with existing non‐uniform rational B‐Splines modeling tools and ability to provide a seamless transition from binary images of real grain shapes (e.g., from 3D X‐ray CT) to modeling and discrete mechanics computations.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
964.
Climate change has fundamentally altered the water cycle in tropical islands, which is a critical driver of freshwater ecosystems. To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, we present a 50‐year (1967–2016) analysis of hydrologic records in 23 unregulated streams across the five largest Hawaiian Islands. For each stream, flow was separated into direct run‐off and baseflow and high‐ and low‐flow statistics (i.e., Q10 and Q90) with ecologically important hydrologic indices (e.g., frequency of flooding and low flow duration) derived. Using Mann–Kendall tests with a running trend analysis, we determined the persistence of streamflow trends through time. We analysed native stream fauna from ~400 sites, sampled from 1992 to 2007, to assess species richness among islands and streams. Declines in streamflow metrics indicated a general drying across the islands. In particular, significant declines in low flow conditions (baseflows), were experienced in 57% of streams, compared with a significant decline in storm flow conditions for 22% of streams. The running trend analysis indicated that many of the significant downward trends were not persistent through time but were only significant if recent decades (1987–2016) were included, with an average decline in baseflow and run‐off of 10.90% and 8.28% per decade, respectively. Streams that supported higher native species diversity were associated with moderate discharge and baseflow index, short duration of low flows, and negligible downward trends in flow. A significant decline in dry season flows (May–October) has led to an increase in the number of no‐flow days in drier areas, indicating that more streams may become intermittent, which has important implications for mauka to makai (mountain to ocean) hydrological connectivity and management of Hawai'i's native migratory freshwater fauna.  相似文献   
965.
A semi‐analytical method for calculating the response of single piles and pile groups subjected to lateral loading is developed in this paper. Displacements anywhere in the soil domain are tied to the displacements of the piles through decay functions. The principle of virtual work and the calculus of variations are used to derive the governing differential equations that describe the response of the piles and soil. The eigenvalue method and the finite difference technique are used to solve the system of coupled differential equations for the piles and soil, respectively. The proposed method takes into account the soil surface displacement along and perpendicular to the loading direction and produces displacement fields that are very close to those produced by the finite element method but at lower computational effort. Compared with the previous method that considered only the soil displacement along the loading direction, accounting for the multi‐directional soil displacement field produces responses for the piles and soil that are closer to those approximated by the finite element method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
966.
This paper presents a dynamic fully coupled formulation for saturated and unsaturated soils that undergo large deformations based on material point method. Governing equations are applied to porous material while considering it as a continuum in which the pores of the solid skeleton are filled with water and air. The accuracy of the developed method is tested with available experimental and numerical results. The developed method has been applied to investigate the failure and post‐failure behaviour of rapid landslides in unsaturated slopes subjected to rainfall infiltration using two different bedrock geometries that lie below the top soil. The models show different failure and post‐failure mechanisms depending on the bedrock geometry and highlight the negative effects of continuous rain infiltrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
967.
Uncertainty of best management practice (BMP) performance in future climates is an important consideration for water resources managers. The objective of this study was to quantify the level of uncertainty in performance of seven agricultural BMPs due to climate change in reducing sediment, total nitrogen, and total phosphorus loads. The Soil and Water Assessment Tool coupled with mid‐21st century climate data from the Community Climate System Model were used to develop climate change scenarios for the Tuttle Creek Lake Watershed of Kansas and Nebraska. Uncertainty level of each BMP was determined using Latin Hypercube Sampling, a constrained Monte Carlo sampling technique. Samples were taken from distributions of several variables (monthly precipitation, temperature, CO2, and BMP implementation parameters). Cumulative distribution functions were constructed for each BMP, pollutant, and climate scenario combination. Results demonstrated that BMP performance uncertainty is amplified in the extreme climate scenario. Among BMPs, native grass replacement generally had higher uncertainty level but also had the greatest reductions. This study highlights the importance of incorporating uncertainty analysis into mitigation strategies aiming to reduce negative impacts of climate change on water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
968.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
969.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
970.
Mathematical modelling is a well‐accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost‐effective way to make this assessment, the added value brought by landscape‐specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were the following: (i) to present the adaptation of PHYSITEL (a geographic information system) to parameterize isolated and riparian wetlands; (ii) to describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) to evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules), and the added value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness‐of‐fit indicators and 14 water flow criteria. A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate the following: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics; and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g. typology and location) on watershed hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号