首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   36篇
大气科学   1篇
地球物理   7篇
地质学   96篇
海洋学   8篇
天文学   1篇
综合类   2篇
自然地理   1篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   13篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1998年   5篇
  1997年   4篇
  1993年   2篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
21.
The Ni-Co-(PGE) sulfide deposits of the Thompson Nickel Belt (TNB) in Northern Manitoba, Canada are part of the fifth largest nickel camp in the world based on contained nickel; past production from the TNB deposits is 2500 kt Ni. The Thompson Deposit is located on the eastern and southern flanks of the Thompson Dome structure, which is a re-folded nappe structure formed during collision of the Trans-Hudson Orogen with the Canadian Shield at 1.9–1.7 Ga. The Thompson Deposit is almost entirely hosted by P2 member sulfidic metasedimentary rocks of the Paleoproterozoic Ospwagan Group. Variably serpentinised and altered dunites, peridotites and pyroxenites contain disseminated sulfides and have a spatial association with sediment-hosted Ni sulfides which comprise the bulk of the ore types. These rocks formed from rift-related komatiitic magmas that were emplaced at 1.88 Ga, and subsequently deformed by boudinage, thinning, folding, and stacking.Disseminated sulfide mineralization in the large serpentinised peridotite and dunite intrusions that host the Birchtree and Pipe Ni-Co sulfide deposits typically has 4–6 wt% Ni in 100% sulfide. The disseminated sulfides in the less abundant and much smaller boudinaged serpentinised peridotite and dunite bodies associated with the Thompson Deposit have 7–10 wt% Ni in 100% sulfide. The majority of Thompson Mine sulfides are hosted in the P2 member of the Pipe Formation which is a sulfidic schist developed from a shale prololith; the mineralization in the schist includes both low Ni tenor (<1 wt% Ni in sulfide) and barren sulfide (<200 ppm Ni) and a Ni-enriched sulfide with 1–18 wt% Ni in 100% sulfide. The semi-massive and massive sulfide ores show a similar range in Ni tenor to the metasediment-hosted mineralization, but there are discrete populations with maximum Ni tenors of ∼8, 11 and 13 wt% Ni in 100% sulfide. The variations in Ni tenor are related to the Ni/Co ratio (high Ni/Co correlates with high Ni tenor sulfide) and this relationship is produced by the different Ni/Co ratios in sulfides with a range in proportions of pyrrhotite and pentlandite. Geological models of the ore deposit, host rocks, and sulfide geochemical data in three dimensions reveal that the Thompson Deposit forms an anastomosing domain on the south and east flanks of a first order D3 structure which is the Thompson Dome. In detail, a series of second order doubly-plunging folds on the eastern and southern flank control the geometry of the mineral zones. The position of these folds on the flank of the Thompson Dome is a response to the anisotropy of the host rocks during deformation; ultramafic boudins and layers of massive quartzite in ductile metasedimentary rocks control the geometry of the doubly-plunging F3 structures. The envelope of mineralization is almost entirely contained within the P2 member of the Pipe formation, so the deposit is clearly folded by the first order and second order D3 structures. The sulfides with highest Ni tenor (typically >13 wt% Ni in sulfide) define a systematic trend that mirrors the configuration of the second order doubly-plunging F3 structures on the flanks of the Dome. Although moderate to high Ni tenor mineralization is sometimes localized in fold hinges, more typically the highest Ni tenor mineralization is located on the flanks of the fold structures.There is no indication of the mineralogical and geochemical signatures of sedimentary exhalative or hydrothermal processes in the genesis of the Thompson ores. The primary origin of the mineralization is undoubtedly magmatic and this was a critical stage in the development of economic mineralization. Variations in metal tenor in disseminated sulfides contained in ultramafic rock indicate a higher magma/sulfide ratio in the Thompson parental magma relative to Birchtree and Pipe. The variation in Ni tenor of the semi-massive and massive sulfide broadly supports this conclusion, but the variations in metal tenor in the Thompson ores was likely created partly during deformation. The sequence of rocks was modified by burial and loading of the crust (D2 events) to a peak temperature of 750 °C and pressure of 7.5 kbar. The third major phase of deformation (D3) was a sinistral transpression (D3 event) which generated the dome and basin configuration of the TNB. These conditions allowed for progressive deformation and reformation of pyrrhotite and pentlandite into monosulfide solid solution as pressure and temperature increased; this process is termed sulfide kinesis. Separation of the ductile monosulfide solid solution from granular pentlandite would result in an effective separation of Ni during metamorphism, and the monosulfide solid solution would likely be spread out in the stratigraphy to form a broad halo around the main deposit to produce the low Ni tenor sulfide. Reformation of pentlandite and pyrrhotite after the peak D2 event would explain the broad footprint of the mineral system. The effect of the D3 event at lower pressure and temperature would have been to locally redistribute, deform, and repeat the lenses of sulfide.The understanding of the relationships between petrology, stratigraphy, structure, and geochemistry has assisted in formulating a predictive exploration model that has triggered new discoveries to the north and south of the mine, and provides a framework for understanding ore genesis in deformed terrains and the future exploration of the Thompson Nickel Belt.  相似文献   
22.
李映葵  曹建劲  陈杰  易杰 《岩石学报》2017,33(3):831-842
为探讨上升气流微粒与深部隐伏矿体之间关系,在广西清明山铜镍硫化物矿床上方土壤中采集上升气流微粒,并采用透射电子显微镜(TEM)对微粒的形貌、大小、聚合状态、化学组分及结构等进行分析。结果表明,微粒主要由Cu、Co、Zn、Fe、Ca、Si、S等元素组成,其中成矿元素Cu、Co以自然Cu-Fe-Co、Zn-Fe-Co及Fe-Co合金微粒的形式存在,其余如Fe、Ca、Si、S等元素则以氢氧化物、氧化物及碳酸盐微粒形式存在。微粒可分为微粒聚合体及单个微粒,微粒的大小为50~500nm,微粒的形状多为不规则状、近椭圆形、近球状、水滴状和近长方体等。微粒中高含量的Cu、Co、Zn来源于深部隐伏矿体,含Fe、S微粒来源于矿床中金属硫化物矿物。此外,高价态的微粒组分指示微粒处于相对氧化的环境。清明山铜镍硫化物矿床的上升气流微粒组分与矿床矿物组分间存在着较好的对应性,本研究为隐伏铜镍硫化物矿床提供了新的找矿方法。  相似文献   
23.
除砷技术现状与展望   总被引:3,自引:0,他引:3       下载免费PDF全文
随着除砷技术的发展,生物法和硫化法等除砷技术已应用于工业除砷,混凝法、离子交换法和直接沉淀法等除砷技术在废水除砷中也已广泛应用。在综述了近年来除砷技术在工业中和含砷废水处理上的应用后,对其中各种技术进行了分析,并对我国除砷技术的发展方向进行了展望。  相似文献   
24.
王平  刘文周  李娟 《云南地质》2012,(2):267-271,276
分析研究甘肃金川与甘肃肃北黑山铜镍硫化物矿床,认为两者存在明显相似,矿床成因都属岩浆熔离矿床,局部都发现有贯入型特富矿石。根据在两地的实际工作情况,作者对黑山矿田含矿超基性岩体的形成与空间展布规律进行新的研究判断。  相似文献   
25.
云南富宁地区铜镍矿成矿地质条件分析   总被引:1,自引:0,他引:1  
铜镍是富宁地区主要矿种。成矿母岩为"安定型"基性岩。岩体具有明显的分异现象,自边缘至中心可分成致密状辉绿岩相、中细粒橄榄辉长苏长岩相、中粒辉长苏长岩相、中粒闪长岩相四个相带。铜镍矿主要产于中细粒橄榄辉长苏长岩相中,其次产于中粒辉长苏长岩相中。对富宁地区铜镍矿成矿地质条件进行分析。  相似文献   
26.
http://www.sciencedirect.com/science/article/pii/S1674987111000429   总被引:1,自引:0,他引:1  
The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration.  相似文献   
27.
云南香格里拉红山铜矿石硫化物环带及地质意义   总被引:3,自引:3,他引:0  
云南香格里拉县红山铜矿是三江义敦岛弧带南端重要铜矿床,颇受关注,成因认识分歧大.矿区出露上三叠统板岩、变碎屑岩和灰岩夹中基性火山岩、火山碎屑岩以及少量侵入其中的中酸性和超基性岩脉、岩株,透镜状铜硫化物矿体产在顺层状矽卡岩体内或边部,成矿后断裂明显.矿石中普遍发育以黄铁矿为核部、黄铜矿为中间带、磁黄铁矿为边部带的硫化物环带,其中核部黄铁矿呈立方体自形-半自形晶,黄铜矿呈他形晶围绕黄铁矿沉淀,磁黄铁矿呈他形分布在黄铜矿外围,内带常被外带硫化物溶蚀交代.环带从内到外硫化物先后沉淀,矿物生成顺序为黄铁矿-黄铜矿-磁黄铁矿.环带中三种硫化物矿物的REE配分曲线和微量元素蛛网图极为相似,负Eu异常显著,富集U、Th、Zr、Hf,亏损Rb、Sr、Ba,与矿区超基性岩表现出较高相似性;环带从内到外,∑REE(0.17371×10-6、1.22626×10-6、5.25925×10-6)和微量元素含量依次升高,Co/Ni和Se/Te比值降低,指示矿石硫化物沉淀过程中,可能伴随热液体系内地壳物质不断增加.环带中硫化物矿物δ34SV-CDT=3.81‰~5.23‰,具有岩浆硫源特征,δ34SV-CDT边部带磁黄铁矿 (4.47‰)<δ34SV-CDT中间带黄铜矿(4.58‰)< δ34SV-CDT核部黄铁矿(4.65‰),三种硫化物间没有达到同位素平衡分馏.红山铜矿石环带结构是岩浆热液为主成矿流体中黄铁矿、黄铜矿、磁黄铁矿先后晶出成因,伴随硫化物环带的形成,热液系统从早到晚H2S和O2逸度降低或pH升高过程.  相似文献   
28.
The Limahe Ni–Cu sulfide deposit is hosted by a small mafic–ultramafic intrusion (800 × 200 × 300 m) that is temporally associated with the voluminous Permian flood basalts in SW China. The objective of this study is to better understand the origin of the deposit in the context of regional magmatism which is important for the ongoing mineral exploration in the region. The Limahe intrusion is a multiphase intrusion with an ultramafic unit at the base and a mafic unit at the top. The two rock units have intrusive contacts and exhibit similar mantle-normalized trace element patterns and Sr–Nd isotopic compositions but significantly different cumulus mineralogy and major element compositions. The similarities suggest that they are related to a common parental liquid, whereas the differences point to magma differentiation by olivine crystallization at depth. Sulfide mineralization is restricted to the ultramafic unit. The abundances of sulfides in the ultramafic unit generally increase towards the basal contacts with sedimentary footwall. The δ 34S values of sulfide minerals from the Limahe deposit are elevated, ranging from +2.4 to +5.4‰. These values suggest the involvement of external S with elevated δ 34S values. The mantle-normalized platinum-group element (PGE) patterns of bulk sulfide ores are similar to those of picrites associated with flood basalts in the region. The abundances of PGE in the sulfide ores, however, are significantly lower than that of sulfide liquid expected to segregate from undepleted picrite magma. Cr-spinel and olivine are present in the Limahe ultramafic rocks as well as in the picrites. Mantle-normalized trace element patterns of the Limahe intrusion generally resemble those of the picrites. However, negative Nb–Ta anomalies, common features of contamination with the lower or middle crust, are present in the intrusion but absent in the picrites. Sr–Nd isotopes suggest that the Limahe intrusion experienced higher degrees of contamination with the upper crust than did the picrites. The results of this study permit us to suggest that the parental magma of the Limahe intrusion was derived from picritic magma by olivine fractionation and contamination in a staging chamber at mid-crustal levels. Depletion of PGE in the sulfide ores in the Limahe intrusion is likely due to previous sulfide segregation of the parental magmas in the staging chamber. Sulfide mineralization in the Limahe intrusion is related to second-stage sulfide segregation after the fractionated magmas acquired external S from pyrite-bearing country rocks during magma ascent to the Limahe chamber. The abrupt change in mineralogical and chemical compositions between the ultramafic unit and the overlying unit suggests that at least two separate pulses of magma were involved in the development of the Limahe intrusion. We propose that the Limahe intrusion was once a wider part of a dynamic conduit that fed magma to the overlying subvolcanic dykes/sills or lavas. The ultramafic unit formed by the first, relatively more primitive magma, and the mafic unit formed by the second, relatively more fractionated magma. Immiscible sulfide droplets that segregated from the first magma settled down with olivine crystals to form the sulfide-bearing, olivine-rich rocks in the base of the intrusion. The overlying residual liquids were then pushed out of the chamber by the second magma. Critical factors for the formation of an economic Ni–Cu sulfide deposit in such a small intrusion include the dynamic petrologic processes involved and the availability of external sulfur. The Limahe deposit reminds us that small, multiphase, mafic–ultramafic intrusions in the region should not be overlooked for the potential of economic Ni–Cu sulfide deposits.  相似文献   
29.
安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义   总被引:1,自引:1,他引:0  
安徽冬瓜山矿床是铜陵矿集区内一个重要的大型铜(金)矿床,颇受关注,成因认识分歧较大。矿床内块状硫化物矿石中普遍发育以黄铁矿为核部、黄铜矿为中间带、磁黄铁矿为边部带的硫化物环带。这些环带核部黄铁矿多呈自形-半自形晶,黄铜矿呈他形晶围绕黄铁矿沉淀,磁黄铁矿呈他形分布在黄铜矿外围,内带常被外带硫化物溶蚀交代。硫同位素分析结果显示,环带中硫化物矿物的硫同位素(δ34S=1.6‰~5.1‰)具有岩浆硫源特征,同时从核部黄铁矿到中间带黄铜矿,再到边部磁黄铁矿δ34S值逐渐降低。以上特征表明环带从内到外硫化物之间并非平衡共生关系,而是黄铁矿、黄铜矿和磁黄铁矿先后依次晶出。硫化物环带核部粗粒黄铁矿(粒径大于1.5cm)的Co、Ni含量分别为292×10-6~1504×10-6和32.7×10-6~39.9×10-6,Co/Ni=7.32~46.0(平均26.7),与海底火山喷流沉积型黄铁矿的Co、Ni特征基本一致。核部黄铁矿由颗粒中心向边缘,Fe/S原子比值、Mo和Co含量先逐渐升高,再逐渐降低,而Cu、Zn等成矿元素主要富集于颗粒边缘,并向边缘有逐渐升高趋势。与此同时,细粒黄铁矿(粒径小于0.5cm)中的Cu、Zn等元素的含量明显高于粗粒黄铁矿。环带中三种硫化物矿物的REE配分曲线和微量元素蛛网图极为相似,相对富集LREE、Rb、Th等元素,而亏损Nb、Ta、Zr、Hf、Sr、Ba和HREE等元素,由环带核部到边部δEu逐渐减小,与矿区石英二长闪长(玢)岩表现出较高的相似性。以上特征综合分析表明,冬瓜山铜(金)矿床中硫化物环带经历了以下形成过程:石炭纪海底喷流沉积作用在矿区形成沉积黄铁矿,到燕山期,在区内强烈的构造-岩浆活动作用下,致使早期沉积的黄铁矿首先发生变质重结晶作用,形成粒状黄铁矿,随后岩浆热液对其进行叠加改造,并在岩浆热液作用下相继围绕粒状黄铁矿增生,依次沉淀出热液型黄铁矿、黄铜矿和磁黄铁矿,最终形成硫化物环带。这一认识,结合硫化物环带中元素及硫同位素特征进一步表明冬瓜山铜(金)矿床的形成先后经历了古生代海底喷流沉积成矿作用和燕山期岩浆热液成矿作用,矿床中的成矿物质(特别是Cu、Zn等成矿元素)主要来源于燕山期岩浆热液,但石炭系海底喷流沉积作用也提供了部分物质(例如,Fe、S、Mo、Co和Ni等)。此外,环带中微量元素的变化特征表明,随着硫化物环带的形成,成矿热液系统的温度、硫逸度和氧逸度逐渐降低和(或)p H值升高。  相似文献   
30.
罗邦月 《矿产与地质》2001,15(2):102-106
摸清浙江漓渚铁矿的硫化矿物的分布规律,尤其是矿物特征,针对该选矿仅有磁选无脱硫装置这一现状,在原矿采出过程中,实行合理配矿,使终产品铁精矿选的有害元素硫的含量得以控制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号