首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11780篇
  免费   2733篇
  国内免费   6097篇
测绘学   36篇
大气科学   1篇
地球物理   281篇
地质学   19009篇
海洋学   96篇
综合类   1044篇
自然地理   143篇
  2024年   56篇
  2023年   269篇
  2022年   423篇
  2021年   523篇
  2020年   465篇
  2019年   582篇
  2018年   508篇
  2017年   658篇
  2016年   762篇
  2015年   721篇
  2014年   1047篇
  2013年   866篇
  2012年   1077篇
  2011年   990篇
  2010年   924篇
  2009年   781篇
  2008年   728篇
  2007年   810篇
  2006年   757篇
  2005年   669篇
  2004年   678篇
  2003年   595篇
  2002年   580篇
  2001年   675篇
  2000年   622篇
  1999年   586篇
  1998年   580篇
  1997年   557篇
  1996年   494篇
  1995年   383篇
  1994年   328篇
  1993年   249篇
  1992年   207篇
  1991年   159篇
  1990年   91篇
  1989年   79篇
  1988年   58篇
  1987年   36篇
  1986年   18篇
  1985年   12篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
962.
963.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   
964.
Tsunamis can leave deposits on the land surface they inundate. The characteristics of tsunami deposits can be used to calculate tsunami run-up height and velocity. This paper presents a reconstruction of tsunami run-up from tsunami deposit characteristics in a simple mathematical model. The model is modified and applied to reconstruct tsunami run-ups at Ao Kheuy beach and Khuk Khak beach, Phangnga province, Thailand. The input parameters are grain-size and maximum run-up distance of the sediment. The reconstructed run-up heights are 4.16–4.91 m at Ao Kheuy beach and 5.43–9.46 m at Khuk Khak beach. The estimated run-up velocities (maximum velocity) at the still water level are 12.78–19.21 m/s. In the area located 70–140 m inland to the end of run-up inundation, estimated mean run-up velocities decrease from approximately 1.93 m/s to 0 m/s. Reasonably good agreements are found between reconstructed and observed run-up heights. The tsunami run-up height and velocity can be used for risk assessment and coastal development programs in the tsunami affected area. The results show that the area from 0 to 140 m inland was flooded by high velocity run-ups and those run-up energies were dissipated mainly in this area. The area should be designated as either an area where settlement is not permitted or an area where effective protection is provided, for example with flood barriers or forest.  相似文献   
965.
This paper is concerned with an example of quantitative modelling of orebody formation as a guide to reducing the risk for future mineral exploration. Specifically, the paper presents a detailed 3–D numerical model for the formation of the Century zinc deposit in northern Queensland. The model couples fluid flow with deformation, thermal transport and chemical reactions. The emphasis of the study is a systems approach where the holistic mineralising system is considered rather than concentrating solely on the mineral deposit. In so doing the complete plumbing system for mineralisation is considered with a view to specifying the critical conditions responsible for the ore deposit occurring where it does and having the size and metal grades that are observed. The numerical model is based on detailed geological, tectonic, isotopic and mineralogical data collected over the past 20 years. The conclusions are that the Century zinc deposit is located where it is because of the following factors: (i) a thermal anomaly is associated with the Termite Range Fault due to advection of heat from depth by fluid flow up the Termite Range Fault; (ii) bedding‐plane fissility in the shale rocks hosting the Century zinc deposit has controlled the wavelength and nature of D1 folding in the vicinity of the deposit and has also controlled increases in permeability due to hydrofracture of the shales; such hydrofracture is also associated with the production of hydrocarbons as these shales passed through the ‘oil‐window’; (iii) Pb–Zn leached from crustal rocks in the stratigraphic column migrated up along faults normal to the Termite Range Fault driven by topographic relief associated with inversion at the end of the Isan Orogeny; these fluids mixed with H2S derived at depth moving up the Termite Range Fault to mix with the crustal fluids to precipitate Pb–Zn in a plume downstream from the point of mixing. Critical factors to be used as exploration guides are high temperatures, carbonaceous fissile shales now folded into relatively tight D1 folds, fault‐controlled plumbing systems that enable fluid mixing, depletion of metals upstream of the deposit and,in particular,a very wide Fe‐depletion halo upstream of the deposit.  相似文献   
966.
Stress mapping is a numerical modelling technique used to determine the distribution and relative magnitude of stress during deformation in a mineralised terrane. It is based on the general principle that fluid flow in the Earth's crust is primarily related to pressure gradients. It is best applied to epigenetic hydrothermal mineral deposits, where fluid flow and fluid flux are enhanced in dilational sections of structures and in sites of enhanced rock permeability due to high fracture density. These are defined by sites of low minimum principal stress (σ3). Most stress mapping is carried out in two dimensions in plan view using geological maps. This is suitable for terranes with steeply dipping lithostratigraphy and structures in which the distribution of mineral deposits is largely controlled by fault structures portrayed on the maps. However, for terranes with gently dipping sequences and structures, and for situations where deposits are sited in and near the hinges of complex fold structures, stress mapping in cross‐section is preferable. The effectiveness of stress mapping is maximised if mineralisation was late in the evolutionary history of the host terrane, and hence the structural geometry of the terrane and contained deposits were essentially that expressed today. The orientation of syn‐mineralisation far‐field stresses must also be inferred. Two examples of orogenic gold deposits, which meet the above criteria, are used to illustrate the potential of stress mapping in cross‐section. Sunrise Dam, located in the Archaean Yilgarn Craton, is a lode‐gold deposit sited in a thrust‐fold belt. Stress mapping illustrates the heterogeneity of stress distribution in the complex structural geometry of the deposit, and predicts the preferential siting of ore zones around the intersections of more steeply dipping, linking thrusts and banded iron‐formation units, and below the controlling more gently dipping basal thrust, the Sunrise Shear. The Howley Anticline in the Pine Creek block hosts several Palaeoproterozoic gold deposits, sited in complex anticlinal structures in greywacke sequences. Stress mapping indicates that gold ores should develop in the hinge zones of symmetrical anticlines, in the hinge zones and more steeply dipping to overturned limbs of asymmetric anticlines, and in and around thrusts in both anticlines and parasitic synclines. The strong correlation between the predictions of the stress mapping, based on the distribution of low σ3, and the location of gold ores emphasises the potential of stress mapping in cross‐section, not only as an exploration tool for the discovery of additional resources or deposits, but also as a test of geological models. Knowledge of the potential siting of gold ores and their probable orientations also provides a guide to drilling strategies in both mine‐ and regional‐scale exploration.  相似文献   
967.
The Corinthia lode‐gold deposit in amphibolite‐facies greenstone belt rocks in the Southern Cross Province of the Archaean Yilgarn Block contains a largely undeformed pegmatite dyke emplaced during the last phases of movement along the Fraser's‐Corinthia shear zone. Gold mineralization and shear zone development were synchronous, and a Pb‐Pb isochron age of 2620 ±6 Ma for pegmatite emplacement either indirectly dates mineralization, or places a minimum age constraint on the timing of mineralization. This age is in accord with a broadly synchronous dominant episode of Archaean lode‐gold mineralization throughout the Yilgarn Block.  相似文献   
968.
The Ediacara mineral field is situated 30 km W of Beltana on the western margins of the Flinders Ranges, South Australia, and consists of silver‐lead and copper deposits in lower Cambrian carbonate rocks that contain anomalous base‐metal contents throughout the Adelaide Geosyncline. The lower Cambrian rocks, which consist of the basal Parachilna Formation and overlying Ajax Limestone, rest disconformably on the Precambrian, and at Ediacara occupy a shallow N‐S elongate syncline near the hinge zone of the Adelaide Geosyncline. The main primary ore minerals of the silver‐lead mineralization are galena and pyrite, with very minor chalcopyrite and sphalerite, and rare tetrahedrite and pearceite. The gangue consists mainly of silica (both chalcedony and quartz), with minor dolomite and rare barite. The mineralization is stratabound and occurs in conformable zones, the lowest of which commences about 30–50 m above the base of the Cambrian sequence. The host to the silver‐lead mineralization, the Ajax Limestone, can be subdivided into three units which represent a set of lithologies, structures and organic traces indicative of a shallow near‐shore carbonate environment. The silver‐lead mineralization is mainly present in sandy and laminated dolomites which were deposited in an environment ranging from sub‐tidal to bar and channel and tidal flat, respectively. Four types of mineralization have been recognized; disseminated sulphides of syngenetic and/or diagenetic origin and epigenetic concentrations along stylolites, in veins and as breccia fillings. Post‐depositional solution activity has affected a large proportion of the carbonate sequence. The effects of this activity range from stylolites through stylobreccias to solution collapse breccias. The epigenetic concentrations of mineralizations have apparently been formed by the remobilization of the disseminated sulphides during solution activity. The ore and gangue minerals of the epigenetic mineralization display both euhedral forms and distinct colloform banding, and framboidal textures have also been observed in both pyrite and galena. There is evidence of repeated episodic precipitation and no simple paragenetic sequence can be recognized. Fluid inclusions in silica and dolomite associated with the epigenetic mineralization have homogenization temperatures of 159 to 199°C and freezing temperatures that indicate the fluids to be saline brines containing NaCl with CaCl2 and/or MgCl2. Sulphur isotope analyses show a range of 834S values from ‐12.5 to +8.6 per mil, with no evidence of significant differences between the four types of mineralization. The data suggest deposition of the disseminated sulphides as a result of biological reduction of seawater sulphate in a system partially open with respect to sulphate supply. Subsequent remobilization of sulphides apparently involved little or no sulphur isotope fractionation. The Ediacara silver‐lead deposits have many features in common with Mississippi Valley‐type lead‐zinc deposits and appear to have similarities in terms of genesis, in that the epigenetic mineralization has been formed as a result of post‐depositional solution activity during diagenesis in a sedimentary basin. The scale of transport of the metals deposited as the epigenetic mineralization at Ediacara appears, however, to have been very much less than that of the metals in other Mississippi Valley‐type deposits.  相似文献   
969.
Abstract

During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe–P–(Ti)-oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U–Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core–rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core–rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U–Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core–rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe–P–Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe–P–(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.  相似文献   
970.
论辽宁锦西杨家杖子杂岩体的岩浆成因演化及成矿作用   总被引:1,自引:1,他引:1  
杨家杖子杂岩体中的二长闪长岩代表一种母岩浆,它是燕山早期库拉板块向欧亚板块下俯冲所产生的,并汇聚上升的安山质岩浆。粗粒似斑状二长花岗岩、细粒似斑状二长花岗岩和(碱长)花岗斑岩是二长闪长岩浆在7km深、弱还原环境、氧逸度为10~(-8)~10~(-10)Pa、1200°~1250℃的岩浆房中经结晶分异作用的派生物。以后,这些岩浆相继上侵,定位于2.5km深处。由这些岩浆岩侵入体所引起的镁夕卡岩、钙夕卡岩和岩浆期后酸性热液淋滤蚀变非常发育。只有来自细粒似斑状二长花岗岩和(碱长)花岗斑岩岩浆、富含Mo的酸性热液沿着裂隙侵入夕卡岩中,在240~330℃时,才形成Mo矿床。此种酸性热液也沿着裂隙侵入细粒似斑状二长花岗岩和(碱长)花岗斑岩中,而形成细脉浸染Mo矿床。因此,杨家杖子Mo矿床属于斑岩-夕卡岩型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号