首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  国内免费   2篇
地球物理   5篇
地质学   24篇
海洋学   2篇
综合类   2篇
自然地理   3篇
  2018年   1篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   2篇
  1993年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
21.
汪建军  许才军 《地球物理学报》2017,60(11):4398-4420
2017年8月8日21时19分在我国四川省北部阿坝州九寨沟县发生了MW6.5左旋走滑型地震.该地震发生在青藏高原巴颜喀拉块体东北缘,东昆仑断裂南东段的塔藏断裂、岷江断裂和虎牙断裂的交汇地带.包括此次地震,近年来在巴颜喀拉块体周缘已发生了九次6级以上强震,表明巴颜喀拉块体周缘主要活动断裂上的应力水平仍处于不断调整之中.本文采用库仑应力模型研究2017年MW6.5九寨沟地震激发的库仑应力变化、该地震与周边地震的应力触发关系以及强震对周边主要活动断裂的应力扰动.强震序列包括周边区域1536-1975年M≥6历史强震和1976-2017年的MW≥ 6 gCMT地震目录中的强震,共计32个.研究结果表明:(1)2017年MW6.5九寨沟地震激发的同震库仑应力变化仅在局部范围内超过0.1×105Pa,且75%的余震(~12.7天)受到该地震明显的同震应力触发作用,而其余25%的余震落在应力影区,采用最优破裂面可以进一步提高同震库仑应力变化与余震分布的空间相关性;(2)2008年MW7.9汶川地震对2017年MW6.5九寨沟地震的发生有一定的促进作用,在后者震源处激发的同震库仑应力变化为(0.026~0.263)×105Pa,震后黏弹性库仑应力变化为(0.010~0.032)×105Pa.该库仑应力的变化范围取决于汶川地震源断层参数和九寨沟地震接收断层参数.2013年MW6.6芦山地震对九寨沟地震的发生几乎没有影响(< 0.001×105Pa);(3)1654年M8.0甘肃天水南地震对九寨沟地震的发生有明显的促进作用,在九寨沟地震震源处激发的同震库仑应力变化为(0.410~1.266)×105Pa,震后库仑应力变化为(0.147~0.490)×105Pa.1879年M8.0甘肃武都地震可能有比1654年M8.0甘肃天水南地震更强的应力触发作用,但也有可能对九寨沟地震的发生起到抑制作用.在选取的8个九寨沟地震接收断层面上,其中6个接收断层面上该地震所激发的同震库仑应力变化为(0.913~2.364)×105Pa,2个接收断层面上该地震所激发的同震库仑应力变化为(-1.326~-0.454 )×105Pa;在4个接收断层面上震后库仑应力变化为(0.094~1.072)×105Pa,在另外4个接收断层面上震后库仑应力变化为(-1.593~-0.106)×105Pa.1933年四川叠溪地震对九寨沟地震的发生影响较弱,其所激发的同震库仑应力变化为(0.015~0.080)×105Pa,震后库仑应力变化为(-0.029~0.025)×105Pa;(4)九寨沟地震仅在其附近的岷江断裂北段、塔藏断裂和虎牙断裂南段造成较明显的同震库仑应力变化,其分别为0.09×105Pa、(0.14~2.03)×105Pa和0.25×105Pa.而进一步顾及其余31个强震的库仑应力作用则发现,同震库仑应力增加非常显著的主要活动断裂分段为:岷江断裂北段南侧和岷江断裂南段的库仑应力变化分别升高5.6×105Pa和9.8×105Pa.鲜水河断裂北段南侧库仑应力升高23.0×105Pa,鲜水河断裂南段道孚-康定段的北侧库仑应力升高9.0×105Pa,而最南端库仑应力升高3.0×105Pa;龙门山断裂带中段的北侧库仑应力变化为(6.1~7.4)×105Pa,中段库仑应力增加(2.1~11.5)×105Pa;西秦岭北缘断裂东段库仑应力变化为4.4×105Pa;龙日坝断裂北段最北侧的库仑应力变化为2.0×105Pa;小金河断裂北段库仑应力变化为1.7×105Pa;安宁河断裂北段库仑应力变化为1.6×105Pa;(5)由于下地壳和上地幔的黏弹性松弛作用,所有强震在九寨沟地震震后20年造成的黏弹性库仑应力变化在鲜水河断裂、龙门山断裂中段、塔藏断裂以及秦岭南缘断裂西段比较显著,其分别为:(1.0~3.0)×105Pa、2.8×105Pa、(2.3~2.7)×105Pa和0.9×105Pa.但总体上黏弹性库仑应力变化没有改变各断裂上的同震库仑应力变化空间分布.总的库仑应力变化在鲜水河断裂北段南侧和南段的道孚至康定段北侧、龙门山断裂中段北侧、岷江断裂南段和北段南侧、虎牙断裂、塔藏断裂以及西秦岭北缘东段很显著(均超过4×105Pa).由于库仑应力明显升高可能预示着地震潜在危险性增强,因此这些断裂分段可能将来需要重点加以关注.  相似文献   
22.
通过基坑开挖的变形测量实例,观测到基坑开挖时坡后土体的沉降和水平位移具有相关性,可以由实测的土体水平位移推算坡后不同深度土层的沉降量,并分别从土体沉降量和沉降曲线的斜率两种特性来确定基坑开挖在坡后土体中产生形变的范围。在判断影响范围时,单纯以建筑物距基坑距离与基坑深度的比值b/H来确定不够准确,应同时考虑基础埋深和沉降分布曲线的形状。  相似文献   
23.
基于灰色聚类法的下洲隧道围岩分级研究   总被引:1,自引:0,他引:1  
祝艳波 《城市地质》2009,4(4):20-24
在隧道开挖施工过程中,经常会遇到围岩失稳,变形的问题。本文结合了宁德至武夷山高速公路S4合同段下洲隧道工程,利用灰色聚类法对隧道围岩分级进行了分析计算,对比传统分级法与灰色聚类法两种分级结果,并对隧道开挖施工后围岩稳定、支护提出了意见。  相似文献   
24.
Based on binocular stereo photography measurement technology, the actual distribution information of joints and fractures in the tunnel face were obtained via image processing and feature extraction, and the preliminary evaluation of surrounding rock stability of Laohushan tunnel was conducted according to surrounding rock classification method. Since all available surrounding rock classification approaches didn’t consider the influences of the size effect of tunnel excavation span and unfavorable geologic bodies such as weak-fracture zones, an improved discontinuous deformation analysis (DDARF) method was adopted to conduct a numerical simulation of the deformation and fracture processes of the surrounding rock. Using the traveling wave method, triangle DDA blocks were automatically generated in the calculation zone, and the block boundaries were divided into real joints and virtual joints. Based on the real joint information obtained via aforementioned photographic measurement, the real joints in the tunnel face were dynamically modified, in order to achieve the simulation of joint distribution. The results revealed that the fracture evolution regularity, deformation failure mechanism, and block dropping phenomenon that the DDARF joint simulation model calculated are in good agreement with actual conditions, while those obtained based on conventional models present differences from field situation. Additionally, focusing on the localised rockfall phenomenon of Laohushan tunnel, the crack extension rate was introduced to conduct a quantitative comparison of the rock crack evolution process with or without anchor supporting. The research results offer practical guidance for field construction and anchorage support scheme optimization.  相似文献   
25.
利用锚杆轴力量测定围岩破坏区的方法   总被引:1,自引:0,他引:1  
本文系统总结了锚杆轴力分布型式,分析了各轴力分布型式的力学机理。结果表明,在围岩不同区内,锚杆所受剪切力具有不同的特点,而且,锚杆所受剪切的特点在锚杆轴力分布中得到了反映。根据以上关系,提出了利用锚杆轴力量测确定围岩破坏区的方法。  相似文献   
26.
高地应力条件下围岩质量分类方法研究   总被引:1,自引:0,他引:1  
围岩质量分类是隧道及地下工程领域重要的技术工作之一。限于经验,目前常用的围岩质量分类方法主要适用于中低应力、低应力环境,而在高地应力地区的适宜性较差。文章结合某水电工程实例,先后采用BQ分类、HC分类、RMR分类以及Q系统分类方法,分别就4种方法分类结果的相关性、吻合率和一致性等方面开展了系列对比研究和初步的成因分析。发现无论是上述4种方法各自的分类依据和指标,还是各指标权重的大小均有较大差异。故针对高地应力环境,以及研究区高地应力条件下的岩爆问题,分别对现行Q系统分类、HC分类和RMR分类方法逐一进行了修正。如Q系统重点修正了地应力折减系数、节理粗糙度系数Jr和节理风化蚀变系数Ja;HC分类提出了考虑高地应力和岩爆烈度的地应力折减系数,而取消了强度应力比S;RMR方法主要修正了R6,并增加了地应力折减系数K等。修正后的Q、HC、RMR方法所得结果更接近实际情况。最后,基于概率统计方法,建立了采用多种方法的围岩综合分类方案。  相似文献   
27.
十三陵抽水蓄能电站是以地下厂房为中心的大型水电工程。厂房位置的选取不论是在施工条件上,还是经济造价上,都是该工程最重要的问题之一。本文从厂房选取控制性因素厂区断裂特征的分析入手,依据各种物理力学指标对厂区洞室围岩进行了分类,同时分析评价了各种地质条件下的洞室围岩稳定性。最后对厂房3种布置方案的工程地质条件进行了分析对比,得出第三方案是本工程地下厂房最佳位置的结论。  相似文献   
28.
洛阳龙门石窟围岩风化特征研究   总被引:8,自引:1,他引:7  
对洛阳龙门石窟围岩风化特征及风化作用影响因素进行调查研究,指出目前围岩风化作用主要为生物风化和物理风化作用,并进一步对其风化机理进行了探讨。以往研究结果认为风化作用主要类型为物理风化作用,本文研究表明,目前由于西山山顶植被的不断发育,随着植被根须机械破坏作用及植被腐殖质分解的产物引起岩体解离的生物化学破坏作用日益加剧,生物风化作用亦已成为风化破坏主要影响因素,应引起有关部门注意。  相似文献   
29.
岩石隧道围岩变形时空效应分析   总被引:3,自引:0,他引:3  
岩石隧道围岩变形具有时空效应特征。根据围岩变形速率,岩石隧道围岩变形一般可划分为3个阶段,即急剧变形阶段、稳定变形阶段和流变阶段。通过总结分析围岩变形3阶段的特点,结合中梁山隧道D-5H量测剖面的实测数据,对围岩变形的空间效应和时间效应进行了分析。空间效应集中发生在急剧变形段,空间效应段主要靠围岩自身以及初次支护克服围岩发生破坏变形,时间效应则主要体现在流变段。以华蓥山隧道等76个隧道实例为统计样本,分别对围岩变形时空效应与围岩类别和塌方事故的关系进行了相关性分析。结果表明:80%以上的塌方发生于急剧变形段,13%发生在稳定变形段,只有7%左右的塌方发生在流变段。其中Ⅳ类和Ⅴ类围岩在3个阶段都可能发生塌方,Ⅲ类围岩则很少在流变段发生塌方。Ⅰ类和Ⅱ类围岩则基本不会发生较大规模的塌方。对深入了解隧道围岩的变形规律,为隧道灾害防治、选择恰当的支护时机和支护方式很有意义。  相似文献   
30.
论珠江三角洲与外围地区的互补性   总被引:5,自引:0,他引:5  
吕拉昌 《热带地理》2002,22(2):161-165
互补性是珠三角洲与外围地区实现共同发展的重要基础。文中从资源、产业及商品交流的角度,全面分析了珠江三角洲与外围地区的互补性关系,并指出要充分利用这种互补性关系,加强区域要素的交流与合作,走区域整合的发展道路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号