首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4916篇
  免费   2011篇
  国内免费   243篇
测绘学   19篇
大气科学   1篇
地球物理   3793篇
地质学   2335篇
海洋学   290篇
天文学   338篇
综合类   3篇
自然地理   391篇
  2024年   3篇
  2023年   4篇
  2022年   34篇
  2021年   80篇
  2020年   86篇
  2019年   273篇
  2018年   469篇
  2017年   493篇
  2016年   528篇
  2015年   501篇
  2014年   477篇
  2013年   792篇
  2012年   465篇
  2011年   428篇
  2010年   358篇
  2009年   259篇
  2008年   346篇
  2007年   256篇
  2006年   231篇
  2005年   229篇
  2004年   190篇
  2003年   183篇
  2002年   147篇
  2001年   132篇
  2000年   141篇
  1999年   33篇
  1998年   4篇
  1997年   11篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
排序方式: 共有7170条查询结果,搜索用时 15 毫秒
101.
This paper introduces and evaluates a novel method for ascertaining the grain‐size distribution of subsurface sediments that involves profoundly less sampling effort than standard methods. It is based on hybrid sampling principles previously applied to the construction of synthetic surface grain‐size distributions. The method is developed from an empirical demonstration of the approximate similarity of surface and subsurface grain‐size distributions when compared over a common range of sizes. Subsurface hybrid models are found to provide good facsimiles of grain‐size distributions de?ned using standard criteria and to yield distribution percentiles with millimetre accuracy. The technique is presented as an expedient alternative to standard methods for large, perennial gravel‐bed rivers. As this is a new technique, prudent application is advised in lieu of further investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
102.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
103.
104.
Two models are tested on a shake‐table. One of the models is a normal reinforced concrete megaframe structure and the other is a multifunctional vibration‐absorption reinforced concrete megaframe structure in which the laminated rubber bearings are placed between the major frame and the minor frames. Two earthquake motions (the El Centro wave and the Taft wave) are used during the test. This paper presents the dynamic characteristic, the seismic responses and the failure mechanism of these two models under varying peak acceleration levels for each of the earthquake motions. The test results demonstrate that the aseismic behavior of a multifunctional vibration‐absorption reinforced concrete megaframe structure is much better than that of a normal reinforced concrete megaframe structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
105.
The dynamic behaviour of two curved cable‐stayed bridges, recently constructed in northern Italy, has been investigated by full‐scale testing and theoretical models. Two different excitation techniques were employed in the dynamic tests: traffic‐induced ambient vibrations and free vibrations. Since the modal behaviour identified from the two types of test are very well correlated and a greater number of normal modes was detected during ambient vibration tests, the validity of the ambient vibration survey is assessed in view of future monitoring. For both bridges, 11 vibration modes were identified in the frequency range of 0ndash;10Hz, being a one‐to‐one correspondence between the observed modes of the two bridges. Successively, the information obtained from the field tests was used to validate and improve 3D finite elements so that the dynamic performance of the two systems were assessed and compared based on both the experimental results and the updated theoretical models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
106.
This paper presents a model for the analysis of the diffraction of plane waves at a cavity in an infinite homogeneous linear elastic medium supported by a segmented lining. An elastic boundary layer is introduced between the cavity lining and the infinite medium. The boundary layer is simulated by ‘elastic boundary conditions’ in which the stress is proportional to the relative displacement of the lining and of the surrounding medium boundary. A closed‐form analytical solution of the problem was obtained using the Fourier–Bessel series, the convergence of which was proven. It was shown that the number of series terms required to obtain a desired level of accuracy can be determined in advance. Using amplitude–frequency response analysis it was shown that the boundary layer produces additional ‘pseudo‐resonance’ frequencies that depend on the layer properties. These frequencies are almost identical to the eigenvalues obtained from the simple analysis of a segmented elastically supported lining. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
107.
A procedure for developing equations that estimate the isolator displacement due to strong ground motion is applied to buildings isolated with the friction pendulum system. The resulting design equations, based on rigorous non‐linear analysis, offer an alternative to the iterative equivalent‐linear methods used by current U.S. building codes. The governing equations of the system are reduced to a form such that the median normalized displacement of the system due to an ensemble of ground motions is found to depend on only the isolation period—a function of the curvature of the isolator—and the friction force at incipient slip normalized by peak ground velocity. The normalization is effective in minimizing the dispersion of the normalized displacement for an ensemble of ground motions, implying that the median normalized displacement is a reliable estimate of response. The design equations reflect the significant (20 to 38%) increase in displacement when the excitation includes two lateral components of ground motion instead of just one component. Equivalent‐linear methods are shown to underestimate by up to 30% the exact median displacement determined by non‐linear response history analysis for one component of ground motion, and building codes include at most a 4.4% increase for a second component. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
108.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
109.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
110.
After the 1995 Kobe earthquake, the expressway structures in Japan were retrofitted and they will not now be seriously damaged under a certain level of strong earthquake motion. However, the stability of a moving vehicle has not been investigated yet. It has been reported that drivers feel seismically induced vibrations, especially in the transverse direction of vehicles. Owing to this phenomenon, drivers have some difficulty in controlling the vehicles during strong shaking. For further safety promotion of the expressway networks, it is important to understand the drivers' reactions to seismic motion. The present authors have performed a series of seismic response analyses of a moving vehicle to investigate its response characteristics based on numerical simulation. However, the responses of the driver were not considered in the simulation process. In order to investigate the drivers' reactions during an earthquake, a series of virtual tests were conducted using a driving simulator. This driving simulator has six servomotor‐powered electric actuators that control its motions. Several types of tests were carried out for different examinees to investigate drivers' responses while controlling the simulator under seismic motion. The results of this study showed that a larger response time lag to strong shaking and over turning of the steering wheel may shift the vehicle into the next lane. According to this finding, trafficaccidents could possibly occur under strong ground shaking in the case of heavy traffic. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号