首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   36篇
  国内免费   55篇
测绘学   52篇
大气科学   18篇
地球物理   66篇
地质学   97篇
海洋学   9篇
天文学   66篇
综合类   7篇
自然地理   17篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   9篇
  2016年   7篇
  2015年   9篇
  2014年   18篇
  2013年   14篇
  2012年   13篇
  2011年   34篇
  2010年   18篇
  2009年   21篇
  2008年   18篇
  2007年   18篇
  2006年   15篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   3篇
  1998年   3篇
  1996年   5篇
  1995年   5篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有332条查询结果,搜索用时 187 毫秒
141.
介绍了我国第27次南极考察埃默里冰架外缘实施航空摄影的研究目的及实施方案,并对像控点的GPS数据进行处理,获得像控点坐标。通过ZSS 3(中山站连续运行站)的已知坐标,分析解算结果精度是否满足航空摄影的成图精度。  相似文献   
142.
The terrestrial water cycle is the mutual transformation of surface and near-surface water, which controls the supply of fresh water resources. It is affected by human activities, solar radiation and gravity, as well as climate and environmental conditions. Inter-basin water transfer, irrigation, crop cultivation and harvesting, exploitation of groundwater water and other human activities lead to the change of spatial and temporal distribution of soil moisture, the underground water level, surface albedo, surface evaporation, as well as water and energy exchange between land surface and atmosphere. Human water use generates important feedback on the climate and changes the processes of the terrestrial water cycle significantly. The spatial and temporal distribution of precipitation in China is uneven. In addition, human activities further exacerbate the fragility of water resources and the contradiction between supply and demand, posing a serious challenge to the sustainable development of social economy. Therefore, understanding the laws and mechanisms of terrestrial water cycle change is very important for water resources utilization and human sustainable development. From the perspective of climate change and human activities, this paper summarized the impact of human activities on terrestrial water cycle and the progress of climate feedback research. It is urgent to consider the evolution of terrestrial water cycle and its climate under the dual impact of natural and human activities, and develop the large-scale land surface hydrological models and climate models with human water use, crop planting and irrigation, lateral groundwater flow. From the perspective of a fully coupled system, we need quantitatively to assess the climate feedback of human water use and its impact on the terrestrial water cycle process, and to explore its mechanism. We need to distinguish the contribution of human water activities and global climate change to the evolution of terrestrial water cycle in the context of climate change, and to propose water resources management strategies to address climate change.  相似文献   
143.
Phytolith-Occluded Carbon (PhytOC), a relatively stable carbon fraction, plays an important role in biogeochemical carbon cycle and mitigation of global warming. The formation mechanisms of PhytOC, the influence factors of phytolith carbon sequestration, the advances in study of phytolith carbon sequestration, and the management for enhancing the potential of phytolith carbon sequestration in terrestrial ecosystems of China were summarized in this review. Finally, future researches on phytolith carbon sequestration in terrestrial ecosystems of China were prospected. Climates, vegetation types, soil circumstances, the chemical compositions of the phytoliths and other factors will directly or indirectly affect the potential of phytolith carbon sequestration. In China, the PhytOC production quantity in grassland, cropland, forest, wetland and shrub ecosystems is (0.6±0.1)×106,(4.9±1.7)×106,(1.9±0.4)×106,(0.6±0.5)×106 and (1.3±0.3)×106 t CO2/a, respectively. Application of silicon-containing fertilizer, cultivation of high-silicon plant, and traditional enhancement of the plant net primary productivity can significantly improve the potential of phytolith carbon sequestration in terrestrial ecosystems of China. Future studies should focus more on ①the mechanisms of phytolith formation in different plants, ②the phytolith carbon sequestration in underground parts of plants from different terrestrial ecosystems, ③the quantification of soil PhytOC in different terrestrial ecosystems. Furthermore, more comprehensive, economical and reasonable management practices of improving the potential of phytolith carbon sequestration should also be further studied in different terrestrial ecosystems.  相似文献   
144.
In the last decade advances in surveying technology have opened up the possibility of representing topography and monitoring surface changes over experimental plots (<10 m2) in high resolution (~103 points m‐1). Yet the representativeness of these small plots is limited. With ‘Structure‐from‐Motion’ (SfM) and ‘Multi‐View Stereo’ (MVS) techniques now becoming part of the geomorphologist's toolkit, there is potential to expand further the scale at which we characterise topography and monitor geomorphic change morphometrically. Moving beyond previous plot‐scale work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of SfM‐MVS surveys against total station and extensive TLS data at three nested scales: plots (<30 m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub‐grid roughness; and (iii) change‐detection capabilities at an annual scale. Oblique ground‐based images can provide a high‐quality surface equivalent to TLS at the plot scale, but become unreliable over larger areas of complex terrain. Degradation of surface quality with range is observed clearly for SfM models derived from aerial imagery. Recently modelled ‘doming’ effects from the use of vertical imagery are proven empirically as a piloted gyrocopter survey at 50m altitude with convergent off‐nadir imagery provided higher quality data than an Unmanned Aerial Vehicle (UAV) flying at the same height and collecting vertical imagery. For soil erosion monitoring, SfM can provide data comparable with TLS only from small survey ranges (~5 m) and is best limited to survey ranges ~10–20 m. Synthesis of these results with existing validation studies shows a clear degradation of root‐mean squared error (RMSE) with survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the effect of the validation method (e.g. point‐cloud or raster‐based) on the estimated quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
145.
We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.  相似文献   
146.
B.W. Denevi  M.S. Robinson 《Icarus》2008,197(1):239-246
Mariner 10 clear filter (490 nm) images of Mercury were recalibrated and photometrically normalized to produce a mosaic of nearly an entire hemisphere of the planet. Albedo contrasts are slightly larger than seen in the lunar highlands (excluding maria). Variegations indicative of compositional differences include diffuse low albedo units often overlain by smooth plains, the high albedo smooth plains of Borealis Planitia, and high-albedo enigmatic crater floor deposits. A higher level of contrast between immature crater ejecta and average mature material on Mercury compared to the Moon is consistent with a more intense space weathering environment on Mercury that results in a more mature regolith. Immature lunar highlands materials are ∼1.5 times higher in reflectance than analogous immature mercurian materials. Immature materials of the same composition would have the same reflectance on both bodies, thus this observation requires that Mercury's crust contains a significant darkening agent, either opaque minerals or ferrous iron bearing silicates, in abundances significantly higher than those of the lunar highlands. If the darkening agent is opaque minerals (e.g. ilmenite or ulvospinel) Mercury's crust may contain significant ferrous iron and yet not exhibit a 1-μm absorption band.  相似文献   
147.
Nutrient distributions observed at some depths along the continental shelf from 27°05′S (Brazil) to 39°31′S (Argentina) in winter, 2003 and summer, 2004 related to salinity and dissolved oxygen (mL L−1) and saturation (%) data showed remarkable influences of fresh water discharge over the coastal region and in front of the La Plata estuary. In the southern portion of the study area different processes were verified. Upwelling processes caused by ocean dynamics typical of shelf break areas, eddies related to surface dynamics and regeneration processes confirmed by the increase of nutrients and the decrease of dissolved and saturation oxygen data were verified. High silicate concentrations in the surface waters were identified related to low salinities (minimum of 21.22 in winter and 21.96 in summer), confirming the importance of freshwater inputs in this region, especially in winter. Silicate concentration range showed values between 0.00 and 83.52 μM during winter and from 0.00 to 41.16 μM during summer. Phosphate concentrations worked as a secondary trace of terrestrial input and their values varied from 0.00 to 3.30 μM in winter and from 0.03 to 2.26 μM in summer; however, in shallow waters, phosphate indicated more clearly the fresh water influence. The most important information given by nitrate concentrations was the presence of water from SACW upwelling that represents a new source of nutrients for marine primary production. Nitrate maximum values reached 41.96 μM in winter and 33.10 μM in summer. At a depth ∼800 m, high nitrate, phosphate and silicate concentrations were related to Malvinas Current Waters, Subantarctic Shallow Waters and Antarctic Atlantic Intermediate Waters (AAIW). Dissolved oxygen varied from 3.41 to 7.06 mL L−1 in winter and from 2.65 to 6.85 mL L−1 in summer. The percentage of dissolved oxygen saturation in the waters showed values between 48% and 113% in winter and from 46% to135% in summer. The most important primary production was verified in the summer, and situations of undersaturation were mainly observed below 50 m depth and at some points near the coast. The anti-correlation between nutrients and dissolved oxygen which showed evident undersaturation also revealed important potential sites of remineralization processes. The nutrient behaviours showed some aspects of the processes that occur over the Southwestern South Atlantic continental shelf and in their land–sea interfaces between Mar del Plata and Itajaí.  相似文献   
148.
Environmental conditions of the lower river Odra and its estuary show a high variability of chemical and biological parameters, related to the dynamics of the river, its mouth area, the Lake Dabie-Szczecin Lagoon system, and the Pomeranian Bay. Water chemistry, affected by the total sum of industrial, urban, and agricultural pollution discharged from the direct drainage area is discussed. This pollution load influences the composition and ecological structures of terrestrial, frequently unique, phytal communities associated with aquatic areas, phyto- and zooplankton, benthos, fish fauna, and avifauna. The current status of the terrestrial and aquatic ecosystems is described; elements of cultural infrastructure existing within the Lower Odra Valley in Western Pomerania are mentioned as well.  相似文献   
149.
川东南焦石坝页岩气区现今地温场特征   总被引:2,自引:1,他引:1       下载免费PDF全文
四川盆地是我国重要的含油气区,关于盆地现今地温场的工作,前人已经做过一些研究.而对于近年来页岩气勘探取得突破性进展的川东南焦石坝地区,现今地温场的研究工作甚少.本文基于川东南高陡褶皱带焦石坝页岩气区新增的3口钻井的稳态测温数据和118块岩石样品热导率数据,计算了研究区的地温梯度和大地热流值.结合前人的研究成果,编制了研究区大地热流等值线图.结果表明,焦石坝页岩气区地温梯度介于24~34℃/km,大地热流值介于60~70mW·m~(-2)之间,与川中古隆起相似,属于地温高异常区.地温高异常缘于隆起区相对高的岩石热导率引起的浅部热流的重新分配.其次,与位于研究区东侧边界的齐岳山大断裂在燕山和喜山期的构造引起的热液活动有关.焦石坝页岩气区地温高异常对页岩气的解吸附速率具有促进作用,对提高采收率具有一定意义.  相似文献   
150.
International conservation organisations have identified priority areas for biodiversity conservation. These global-scale prioritisations affect the distribution of funds for conservation interventions. As each organisation has a different focus, each prioritisation scheme is determined by different decision criteria and the resultant priority areas vary considerably. However, little is known about how the priority areas will respond to the impacts of climate change. In this paper, we examined the robustness of eight global-scale prioritisations to climate change under various climate predictions from seven global circulation models. We developed a novel metric of the climate stability for 803 ecoregions based on a recently introduced method to estimate the overlap of climate envelopes. The relationships between the decision criteria and the robustness of the global prioritisation schemes were statistically examined. We found that decision criteria related to level of endemism and landscape fragmentation were strongly correlated with areas predicted to be robust to a changing climate. Hence, policies that prioritise intact areas due to the likely cost efficiency, and assumptions related to the potential to mitigate the impacts of climate change, require further examination. Our findings will help determine where additional management is required to enable biodiversity to adapt to the impacts of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号