首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2240篇
  免费   244篇
  国内免费   292篇
测绘学   475篇
大气科学   358篇
地球物理   292篇
地质学   716篇
海洋学   77篇
天文学   9篇
综合类   151篇
自然地理   698篇
  2024年   4篇
  2023年   14篇
  2022年   62篇
  2021年   76篇
  2020年   107篇
  2019年   97篇
  2018年   76篇
  2017年   124篇
  2016年   136篇
  2015年   145篇
  2014年   140篇
  2013年   196篇
  2012年   125篇
  2011年   112篇
  2010年   93篇
  2009年   139篇
  2008年   99篇
  2007年   117篇
  2006年   107篇
  2005年   106篇
  2004年   110篇
  2003年   77篇
  2002年   75篇
  2001年   78篇
  2000年   61篇
  1999年   46篇
  1998年   47篇
  1997年   32篇
  1996年   33篇
  1995年   34篇
  1994年   22篇
  1993年   17篇
  1992年   23篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   2篇
排序方式: 共有2776条查询结果,搜索用时 15 毫秒
51.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   
52.
Tropical forest mapping is one of the major environmental concerns at global and regional scales in which remote sensing techniques are firmly involved. This study examines the use of the variogram function to analyse forest cover fragmentation at different image scales. Two main aspects are considered here: (1) analysis of the spatial variability structure of the forest cover observed at three different scales using fine, medium and coarse spatial resolution images; and (2) the study of the relationship between rescaled images from the finest spatial resolution and those of the medium and coarse spatial resolutions. Both aspects are analysed using the variogram function as a basic tool to calculate and interpret the spatial variability of the forest cover. An example is presented for a Brazilian tropical forest zone using satellite images of different spatial resolutions acquired by Landsat TM (30 m), Resurs MSU (160 m) and ERS ATSR (1000 m). The results of this study contribute to establishing a suitable spatial resolution of remotely sensed data for tropical forest cover monitoring.  相似文献   
53.
A nationwide multidate GIS database was generated in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in Mexico. Existing cartography on land use/cover at a 1:250,000 scale was revised to select compatible inputs regarding the scale, the classification scheme and the mapping method. Digital maps from three different dates (the late 1970s, 1993 and 2000) were revised, evaluated, corrected and integrated into a GIS database. In order to improve the reliability of the database, an attempt was made to assess the accuracy of the digitalisation procedure and to detect and correct unlikely changes due to thematic errors in the maps. Digital maps were overlaid in order to generate LUCC maps, transition matrices and to calculate rates of conversion. Based upon this database, rates of deforestation between 1976 and 2000 were evaluated as 0.25 and 0.76% per year for temperate and tropical forests, respectively.  相似文献   
54.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   
55.
全极化SAR数据在地表覆盖/利用监测中的应用   总被引:2,自引:0,他引:2  
SIR-C/X-SAR是运行在地球轨道上的第一个多波段(L、C、X)全极化(HH、VV、VH和HV)成像雷达系统,该系统具有极化测量和干涉测量功能。全极化雷达测量每一个像元的全散射矩阵,所获取的信息非常丰富。但是,由于这些极化合成图像具有较高的相关性,导致了图像信息提取精度的降低。本文基于新疆和田地区的SIR-CL波段全极化雷达数据,利用全散射矩阵的特点合成了HH-VV极化相关图像、极化度图像、目标增强图像和相位差图像。这些图像相关性小,地表覆盖信息丰富,提高了全极化SAR数据在实验区信息提取的准确度。  相似文献   
56.
The analysis of SPOT-5 characteristics on land cover Classification   总被引:1,自引:0,他引:1  
徐开明 《测绘科学》2004,29(Z1):108-116
<正>KnowledgeaboutlandcoverandlandusehasbecomeincreasinglyimportantastheNationplanstoovercometheproblemsofuncontrolleddevelopment,deterioratingenvironmentalquality,lossofprimeagriculturallandsetc.Landuseandlandcoverdataareneededintheanalysisofenvironmentalprocessesandproblemstoknowiflivingconditionsandstandardsaretobeimprovedormaintainedatcurrentlevels.  相似文献   
57.
Cultivation, overgrazing, and overharvesting are seriously degrading forest and grassland ecosystems in the Taurus Mountains of the southern Mediterranean region of Turkey. This study investigated the effects of changes on soil organic carbon (SOC) content and other physical soil properties over a 12-year period in three adjacent ecosystems in a Mediterranean plateau. The ecosystems were cropland (converted from grasslands in 1990), open forest, and grassland. Soil samples from two depths, 0–10 and 10–20 cm, were collected for chemical and physical analyses at each of cropland, open forest, and grassland ecosystems. SOC pools at the 0–20 cm depth of cropland, forest, and grassland ecosystems were estimated at 32,636, 56,480, and 57,317 kg ha−1, respectively. Conversion of grassland into cropland during the 12-year period increased the bulk density by 10.5% and soil erodibility by 46.2%; it decreased SOM by 48.8%, SOC content by 43%, available water capacity (AWC) by 30.5%, and total porosity by 9.1% for the 0–20 cm soil depth (p<0.001). The correlation matrix revealed that SOC content was positively correlated with AWC, total porosity, mean weight diameter (MWD), forest, and grassland, and negatively with bulk density, pH, soil erodibility factor, and cropland. The multiple regression (MLR) models indicated that any two of the three ecosystems and one of the two soil depths accounted for 86.5% of variation in mean SOC values ((p<0.001).  相似文献   
58.
This article presents an econometric analysis of land‐cover change in western Honduras. Ground‐truthed satellite image analysis indicates that between 1987 and 1996 net reforestation occurred in the 1,015‐km2 study region. While some reforestation can be attributed to a 1987 ban on logging, the area of reforestation greatly exceeds that of previously clear‐cut areas. Further, new area was also deforested between 1987 and 1996. Thus, the observed land‐cover changes represent a complex mosaic of changing land‐use patterns across time and space. The analysis contributes to the literature on land‐cover change modeling in that: (1) it compares two econometric approaches to capture complex and often bidirectional changes in land cover from 1987 to 1996 as a function of agricultural suitability and transportation costs, and (2) it addresses techniques to identify and correct for spatial autocorrelation in a categorical regression framework.  相似文献   
59.
近50年中国地面气候变化基本特征   总被引:403,自引:14,他引:403  
采用国家基准气候站和基本气象站的地面资料,系统地分析了中国大陆地区1951年以来近地表主要气候要素演化的时间和空间特征。结果表明,中国近50 a来年平均地表气温变暖幅度约为1.1℃,增温速率接近0.22℃/(10 a),比全球或半球同期平均增温速率明显偏高。地表气温增暖主要发生在最近的20余年,其季节和空间特征与前人分析结论基本一致。降水量变化趋势对所取时间段和区域范围敏感。1951年以来全国平均降水量变化趋势不明显,但1956年以来略有增加。降水变化的空间特征明显而相对稳定,东北北部、包括长江中下游的东南部地区和西部广大地区降水增加,而华北地区以及东北东南部和西北东部地区降水明显减少。分析还发现,近50a来全国平均的日照时数、平均风速、水面蒸发等气候要素均呈显著下降趋势,但积雪地带的最大积雪深度却有所增加。中国日照时间和水面蒸发量变化的空间特征很相似,减少最明显的地区均发生在华北和华东,新疆次之。影响中国年代以上尺度气候变化的因子错综复杂,人类活动引起的大气中温室气体浓度增高可能在一定程度上影响了中国近50 a来的气候,但考虑到尚存的不确定性,目前仍不能给出明确结论。中国东部大部分地区日照时间和水面蒸发量减少可能均起源于人为排放的气溶胶影响,平均风速减弱也有利于水面蒸发量下降,而在西部地区云量和降水量的变化可能更重要。  相似文献   
60.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号