首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   3篇
  国内免费   2篇
大气科学   2篇
地球物理   34篇
地质学   78篇
海洋学   12篇
自然地理   4篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   27篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   5篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
101.
Impacts of irrigation with treated wastewater effluents on soils and groundwater aquifer in the vicinity of Sidi Abid Region (Tunisia) are evaluated. The groundwater aquifer was monitored by several piezometers, where monthly water levels were registered and groundwater salinity was evaluated. This resulted in characterizing the spatial and temporal evolution of the hydrochemical and hydrodynamic properties of the aquifer, showing thereby the impact of artificial recharge. Piezometric maps for pre-recharge and post-recharge situations were developed and a comparison study of both piezometric situations was considered. The piezometric evolution map showed a generalized rise of the piezometric level in the vicinity of the irrigation zone. The extent of recharge was shown to increase with time as the groundwater level increase, which was localized in the vicinity of the irrigation area, reached more extended zones. Several groundwater samples were withdrawn from wells and piezometers and analyzed. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of nutrients (28 mg/l for NO3 and 3.97 mg/l for NH4) in the groundwater aquifer below the irrigation zone, which confirms again the infiltration of treated wastewater effluents. The evolution of soil salinity was examined through chemical analysis of soil samples. Electric conductivities of soils were generally shown to be less than 4 mS/cm while the irrigation water has an electric conductivity that may reach 6.63 mS/cm. This might be explained by the phenomenon of dilution and the capacity of soils to evacuate salts downward.  相似文献   
102.
Tunisian Chott’s region is one of the most productive artesian basins in Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and by hydrologic characteristics such as the flow pattern and time of residence. The system is composed of an upper unconfined “Plio-Quaternary” aquifer with a varying thickness of 20–200 m, an intermediate confined/unconfined “Complex Terminal” aquifer about 100 m in thickness and a deeper “Continental Intercalaire” aquifer about 150 m in thickness separated by thick clay and marl layers. The dissolution of evaporites and carbonates explains part of the contained Na+, Ca2+, Mg2+, K+, SO42− and Cl-, but other processes, such carbonate precipitation, also contributes to the water composition. The stable isotope composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the Plio-Quaternary aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater.  相似文献   
103.
A new teleosaurid from the Lower Cretaceous of Tataouine (Tunisia), Machimosaurus rex sp. nov., definitively falsifies that these crocodylomorphs faced extinction at the end of the Jurassic. Phylogenetic analysis supports its placement closer to M. hugii and M. mosae than M. buffetauti. With the skull length up to 160 cm and an estimated body length of 10 m, M. rex results the largest known thalattosuchian, and the largest known crocodylomorph at its time. This giant thallatosuchian probably was an ambush predator in the lagoonal environments that characterized the Tethyan margin of Africa during the earliest Cretaceous. Whether the Jurassic-Cretaceous mass extinction was real or artefact is debated. The discovery of M. rex supports that the end-Jurassic crisis affected primarily Laurasian biota and its purported magnitude is most likely biased by the incomplete Gondwanan fossil record. The faunal turnovers during the J-K transition are likely interpreted as local extinction events, triggered by regional ecological factors, and survival of widely-distributed and eurytypic forms by means of habitat tracking.  相似文献   
104.
The Merfeg Formation (upper Campanian) of Central Tunisia crops out around the southwestern periclinal termination of Jebel el Kébar, near Sidi Bouzid. At its base is a massively bedded unit of locally dolomitized, sparsely fossiliferous micritic to microbioclastic limestone that contains several discrete, plurimetric mound-like bodies (lithosomes) of micritic limestone containing locally abundant rudists and corals. The lithosomes are separated laterally from one another by megabreccias and conglomerates containing clasts of similar lithology and are overlain, with sharp contact, by onlapping argillaceous pelagic limestones, within which are intercalated at least two more, somewhat thinner rudist/coral limestone units. This complex of facies is laterally equivalent to thicker, deep platform limestones of the Abiod Formation to the north and east, and to restricted carbonate platform facies of the Berda Formation to the south and west. The lithosomes have previously been interpreted as in situ downslope mudmounds that became capped by rudist and coral formations, cemented, and then surrounded by erosively emplaced debris flows. However, our detailed studies of rudist orientations imply variable and in some cases relatively high angles of bedding within the lithosomes with respect to the regional dip of the host strata. Such steep inclinations of internal bedding are unlikely to have been primary. Accordingly, we propose an alternative interpretation that the lithosomes were platform-derived olistoliths, emplaced along with the associated debris flow deposits. Micritic beds, neighbouring the olistoliths are of variable thickness and contain rare large inoceramids and randomly oriented rudists, as well as locally developed microbioclastic beds with planar and small-scale swaley cross stratification. These micritic and microbioclastic beds are, by contrast, interpreted as primary (i.e., non-olistostromal) slope deposits. Whether the proposed catastrophic collapses of the original platform margin were induced by sea-level fall or seismically triggered (or a combination of the two) remains uncertain.  相似文献   
105.
This paper presents the first comprehensive, non-exhaustive, study of the genetic relationship between slump folds and the synsedimentary paleoslope during Cretaceous time in northern Tunisia. Slump folds occur mainly in the Cretaceous marl-dominated lithofacies, which exposes numerous slump folds structures. In addition, fault kinematic analysis is conducted to define the paleostress fields and the stress states characterizing the Cretaceous extension that triggers soft-sediment deformation and slumping. The MAM and the APM methods are used to deduce the paleoslope in several localities. The calculated values of paleoslope trend derived from MAM and APM methods precise the variation of the paleoslope trend during Cretaceous times in northern Tunisia. This paleoslope is ~NW-dipping during Berriasian, ~SSW-dipping during Valanginian, ~NW-dipping during the Barremian and ~N- to ~NNE or ~S- to ~SSW-dipping during Aptian–Albian period. The results of the back-tilted fault diagram show a ~North to ~Northeast-trending tectonics extension. The back-tilting of Cenomanian slump axis and poles of axial planes (MAM and APM methods) give close results with ~Southward or ~Northward-dipping paleoslope. The restored fault diagrams show ~North to ~Northeast-trending extension during Cenomanian times. Coniacian-Santonian marls deposits seal all the gravity-driven deformation structures. North Tunisian area exposes evidences for abundant soft-sediment deformation and slumping atop a northward facing submarine slope, which was probably dominant from the Early Cretaceous to Santonian with ~North-South tectonic extension related to the Southern Tethyan rifted continental margin evolution.  相似文献   
106.
We used Yellow-legged Gull (YLG) chicks to monitor trace elements in Tunisian areas subject to different pollution stresses: urban contamination (Chikly), industrial pollution (Thyna) and an unpolluted area (Kneis).We measured trace element concentrations (Hg, Se and Pb) in chick feathers. We also assessed their feeding ecology by analyzing both regurgitates and stable isotopes (SIA) in chick feathers and in their prey, to determine the main entry route of pollutants. SIA revealed that YLG feed mainly on aquatic resources from the Lake of Tunis (Chikly colony) and the Gulf of Gabès (Thyna and Kneis colonies). Moreover, the enriched δ15N found in feathers from Chikly are attributed to the eutrophication of the Lake of Tunis. Hg and Se were higher in Kneis and Thyna colonies, in agreement with the higher consumption of marine resources and the greater availability of these elements resulting from the impact of the industrial activity in the area. Pb concentrations were higher in Chikly, related to the heavier traffic around the Lake of Tunis and the use of leaded gasoline.  相似文献   
107.
Structural interpretation of surface and subsurface data in the Eastern foreland basins of Tunisia, allows us to recognize positive inversion structures, i.e. related to compressional events, expressed and recorded in the Paleogene sedimentary pile of the Atlas domain. These episodes are followed by a period of relative tectonic quiescence during Oligocene-Early Miocene with development of extensional structures with slightly tilted panels, grabens and locally the development of listric normal faults branched at depth on “décollement” levels.Comparison of the seismic interpretations and field data collected along the South Atlas Front as well as in the Atlas belt, allows us to propose a tectonic scenario at the scale of Eastern Tunisia Atlas. In particular, we emphasise the role of the so-called “Atlas event” (Middle-Late Eocene), which was initially defined in Algeria but poorly outlined in Tunisia. We will show that the tectonic agenda defined in Eastern Tunisia is consistent with the one proposed elsewhere in the Maghreb allowing us to propose a unified view of the geodynamic evolution of the whole Atlas system during this period.The negative inversion recorded during Oligocene-Early Miocene along with the occurrence of synsedimentary normal faults are related to an increase of the subsidence rate in the frame of continuous shortening coeval to basin formation in the front of the Atlas. The whole Oligo-Miocene evolution results from two different mechanisms: flexuration in the front of the Atlas and the onset of the extension of the Pantelleria-Linosa-Malta rift system of central Mediterranean, which attained a climax stage later during Pliocene-Quaternary.  相似文献   
108.
Abstract

Abstract In arid Tunisia, a tabia system is a traditional macrocatchment water harvesting system. It consists of a runoff area, which occupies two thirds of the slope and is traditionally used for grazing; and one to five cropped plots within U-shaped soil banks arranged in a cascade in the third downstream area. These ?run-on? areas accumulate and store the occasional runoff. Each soil bank is constructed with a discharge weir that allows modification of the flooded area and discharge of excess water towards downstream plots. Such a harvesting system, located in an area with 140 mm annual rainfall, was instrumented during four hydrological years (1995–1999) and 45 rainfall events were recorded. Eleven of these events gave a measurable inflow to at least one of the four plots. The observations showed that the traditional tabia system reduced total surface runoff from the catchment to essentially zero. The harvesting system significantly reduced peaks of surface runoff within the catchment, which also reduced erosion hazards. The cultivated area of about 5% of the total catchment could be supplied by a harvested water amount corresponding to about seven times the amount of each rainfall event larger than 20 mm.  相似文献   
109.
The present-day architecture of the Saharan Atlas in Tunisia can be defined by two principal models: (1) The first model emphasizes a general SW–NE geological structure in the North forming successive and parallel bands (the Tellian zone, the diapir zone) and the central Atlas, which are cut by the southern Atlas ranges located within a NW–SE corridor. These zones are bordered to the East by the “North–South Axis”. (2) The second model defines the Tunisian Atlas in terms of an E–W strike-slip corridor, which initially controls the sedimentary facies distribution during the Meso-Cenozoïc, and which then generates elongate en echelon folds in the sedimentary cover by dextral shearing.In this study, we aim to show that the Saharan Atlas in Tunisia appears today as a triangular megablock, that we call the Tunisian Block (TB), bounded by three structural trends (N–S, SW–NE and NW–SE) belonging to the African strike-slip fault network: (1) The eastern boundary appears as a complex faulted and folded corridor limiting the folded zone of the central Atlas in the West and the depressed zone of the Sahel in the East: it corresponds to the “North–South Axis” as defined classically in the literature. (2) The southern boundary also corresponds to a faulted belt (Gafsa–Negrine-Tozeur corridor), which cuts off the continuation of the North–South axis southward into the Gabès region; it corresponds to the Southern Saharan Atlas, delimited by the Gafsa fault in the North and the Negrine-Tozeur fault in the South. (3) The northern boundary, trending SW–NE, appears rather in the form of a reverse tectonic bundle, facing SE or S (oblique convergence), whose major feature corresponds to the El Alia-Téboursouk fault. This northern boundary cuts across and delimits the N–S corridor towards the North, in such a way that its extension is limited at both extremities. Finally, the inner part of the TB actually corresponds to a mosaic of second-order blocks, each of which contains an arrangement of widely spaced SW–NE trending anticlines forming the main relief separated by vast plains very often occupied by sebkhas. The paleogeographic and structural evolution of this region during the Mesozoic and Palaeogene shows that the TB, along with its limits as defined here, developed an increasingly distinct identity at a very early stage, being characterized by an extensive and/or transtensive tectonic regime. Finally, the Tunisian Atlas Chain defines a triangular domain that owes its origin and particular character precisely because of the paleogeographic and structural history of this paleoblock. The boundaries of this paleoblock remain mobile, thus tectonically controlling the geometry and morphology of a typical intracontinental basin. The extension directions and the frequent changes of stress regime (or rotations) are related to the existence of two active basins: the strike-slip margin of the western branch of Tethys and the Mesogea oceanic basin, with tectonic activity becoming alternately dominant in one or other of the basins at different times. In this context, the Tunisian basin is characterized by rhythmic sedimentation, composed of a succession of filling sequences linked to the continuing tectonic instability of the sedimentary floor associated with two major crises: one at the end of the Aptian and the other at the end of the Ypresian. The vertical movements related to the extension and/or transtension of the blocks is accentuated by Triassic salt tectonics, giving rise to linear (salt axes) or point (salt domes) structures that lead to the formation of shoal zones during development of the basin, thus enhancing the vertical tectonics. The diapirism developed slowly and gradually from late Triassic through to Langhian times, leading to numerous sedimentary wedges on the flanks of the structures. The uprise of the diapirs exhibits three pauses corresponding to the end-Aptian, end-Ypresian and pre-Burdigalian. The vertical tectonics is characterized by abundant drape folds giving rise to an extensional fault-related folding and strike-slip/dip-slip faults creating frequent unconformities that are nevertheless always localized.Finally, the folded chain results from the structural inversion of this paleoblock from Tortonian times onward. We can only account for the various folds-axis directions in the context of an intracontinental chain where the pre-existing major vertical faults are able to develop on the surface as draped-folds in a transpressive regime by the local reorientation of stresses in crustal-scale faults. In detail, the structures produced by this vertical tectonic activity, which are profoundly controlled by inheritance, display a highly original style at very shallow levels in the crust.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号